
Expert Systems With Applications 216 (2023) 119415

A
0

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Complementarity is the king: Multi-modal and multi-grained hierarchical
semantic enhancement network for cross-modal retrieval
Xinlei Pei a,b, Zheng Liu a,b,∗, Shanshan Gao a,b, Yijun Su c

a School of Computer Science and Technology, Shandong University of Finance and Economics, Jinan, 250014, Shandong, China
b Shandong Provincial Key Laboratory of Digital Media Technology, Shandong University of Finance and Economics, Jinan, 250014, Shandong, China
c School of Information Engineering, Minzu University of China, Beijing, 100081, China

A R T I C L E I N F O

Keywords:
Cross-modal retrieval
Primary similarity
Auxiliary similarity
Semantic enhancement
Multi-spring balance loss

A B S T R A C T

Cross-modal retrieval takes a query of one modality to retrieve relevant results from another modality, and
its key issue lies in how to learn the cross-modal similarity. Note that the complete semantic information
of a specific concept is widely scattered over the multi-modal and multi-grained data, and it cannot be
thoroughly captured by most existing methods to learn the cross-modal similarity accurately. Therefore,
we propose a Multi-modal and Multi-grained Hierarchical Semantic Enhancement network (M2HSE), which
contains two stages to obtain more complete semantic information by fusing the complementarity in multi-
modal and multi-grained data. In stage 1, two classes of cross-modal similarity (primary similarity and auxiliary
similarity) are calculated more comprehensively in two subnetworks. Especially, the primary similarities from
two subnetworks are fused to perform the cross-modal retrieval, while the auxiliary similarity provides a
valuable complement for the primary similarity. In stage 2, the multi-spring balance loss is proposed to
optimize the cross-modal similarity more flexibly. Utilizing this loss, the most representative samples are
selected to establish the multi-spring balance system, which adaptively optimizes the cross-modal similarities
until reaching the equilibrium state. Extensive experiments conducted on public benchmark datasets clearly
prove the effectiveness of our proposed method and show its competitive performance with the state-of-the-arts.
1. Introduction

In the era of digital multimedia, the amount of multi-modal data
(𝑒.𝑔., texts, images, and videos) is surging at an unprecedented rate.
For example, when a hot social event happens, users may take pictures,
record videos, and make comments. Therefore, effectively retrieving
multi-modal data has been a significant issue. Under this situation,
cross-modal retrieval (Peng, Huang et al., 2017) has got extensive con-
cerns in industry and academia in recent years. When carrying out the
task of cross-modal retrieval, users utilize the query term of a specific
modality to search the most relevant results of another modality, e.g.,
retrieving images that describe the same semantic concepts as the given
text and vice versa.

The principal goal of cross-modal retrieval is how to learn more
precise cross-modal similarity. Nevertheless, the challenge of ‘‘hetero-
geneity gap’’ (Baltrušaitis et al., 2018), 𝑖.𝑒., inconsistent representations
and distributions of various modalities, has brought tremendous dif-
ficulty to directly estimate the cross-modal similarity. In order to
eliminate such heterogeneity, the mainstream of cross-modal retrieval
methods focus on learning a common embedding space for various
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modalities (Peng, Huang et al., 2017). Over the past decade, several
pioneers have been devoted to exploring the paradigm of common
embedding space learning, which ranges from the early traditional
shallow methods (Peng et al., 2015; Rasiwasia et al., 2010; Wang et al.,
2015) to the recent deep learning methods (Diao et al., 2021; Li et al.,
2022; Zhang et al., 2022).

In general, traditional shallow methods aim to project different
heterogeneous features to a common space through finding a linear
mapping transformation for each modality. However, their main short-
coming is that they learn the common representations from shallow
networks with the low-order linear projection functions, which cannot
well model the high-level semantics of multi-modal data. Due to the
significant advantages of the Deep Neural Network (DNN) in generat-
ing more effective embedding features and uncovering the nonlinear
cross-modal correlations, the DNNs have been successfully used in
common embedding space learning. Most DNN-based methods build
several subnetworks for different modalities and then optimize them
together. Although these methods have overcome the disadvantages
of traditional approaches and gained noticeable improvement, they
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actually neglect the significance of the cross-modal similarity learning
yet, which is the critical factor to promote the performance of cross-
modal retrieval. Concretely, there are two main defects existing in the
previous methods.

Firstly, the calculation of cross-modal similarity lacks comprehensive-
ness. On the one hand, most of them only consider two modalities
(e.g., texts and images) for cross-modal correlation learning, while the
valuable clues in other modalities are ignored. On the other hand, some
methods only exploit uni-grained features to calculate the similarity,
however, features of different granularities play different roles in cross-
modal similarity calculation, because they emphasize distinct levels
of the same semantic concept (𝑖.𝑒., ‘‘granularity gap’’). For instance,
coarse-grained features extracted from whole images mainly contain
the global-level information, while fine-grained features extracted from
image patches pay more attention to the local-level information. The
performance of existing methods suffers from limited number of modal-
ities and granularities, because they mine incomplete semantic informa-
tion to calculate the cross-modal similarity, which is difficult to bridge
the ‘‘heterogeneity gap’’ and the ‘‘granularity gap’’.

Secondly, the optimization of cross-modal similarity lacks flexibility.
Existing cross-modal retrieval methods mainly use the hinge-based
triplet ranking loss (Frome et al., 2013) as the objective function, which
is trained with the random sampling and then generates lots of uninfor-
mative pairs. The redundant pairs cannot provide valuable information
for training, and thus lead a slow convergence and poor performance.
Furthermore, the triplet loss considers all selected samples equally,
which is a rigid manner for cross-modal similarity optimizing. Hence, it
is still a crucial problem for cross-modal retrieval to select and weight
informative pairs.

It is recognized that some characteristics existing in one modality
or granularity cannot be accurately expressed with other modalities or
granularities. Thus, we argue that when describing a specific semantic
concept, different modalities may contain unequal amounts and views
of information, that is to say, there actually exist complementary
relationships between them. Similarly, complementary relationships
also exist in different granularities. As shown in Fig. 1, we provide
several examples about the concept of ‘‘airplane’’ to illustrate the above
mentioned two types of complementary relationships. Particularly, the
image–text pair in Fig. 1(a) is collected from Wikipedia.1 As we often
say that ‘‘a picture is worth a thousand words’’, the image in Fig. 1(a)
contains more details that do not exist in the corresponding text, such
as ‘‘sky’’ and ‘‘cloud’’. On the contrary, the text in Fig. 1(a) expresses
some high-level semantic information that cannot be embodied in its
paired image, such as the designation of this airplane and the company
it belongs to. Therefore, we can conclude that each modality has its
unique semantic information that other modalities do not have, that
is, there are explicit complementary relationships between different
modalities. Furthermore, as shown in Fig. 1(b), the left part describes
the semantic concept ‘‘airplane’’ as a whole, while the right part divides
the ‘‘airplane’’ into several components, such as ‘‘Engine’’ and ‘‘Wing’’.
Therefore, Fig. 1(b) explicitly indicates that the whole image and its
patches describe the semantic information at the global-level and the
local-level respectively, and they are actually complementary to each
other.

As illustrated in Fig. 1, the complete information of a semantic
concept contains lots of semantic pieces, which are widely scattered
over in different modalities and different granularities. Therefore, the
key problem behind the cross-modal similarity learning is how to
collect and integrate as many semantic pieces as possible. Based on the
above analysis, the key idea ‘‘complementarity is the king’’ is proposed
to guide us to handle the task of cross-modal retrieval from a fresh per-
spective, that is, bridging the ‘‘heterogeneity gap’’ and the ‘‘granularity
gap’’ via thoroughly exploring and exploiting the complementarity

1 https://en.wikipedia.org/wiki/Airplane
2

in multi-modal and multi-grained data. Specifically, for the sake of
bridging these two gaps in a unified framework, a Multi-modal and
Multi-grained Hierarchical Semantic Enhancement network (M2HSE) is
proposed to learn the cross-modal similarity more comprehensively and
more accurately through two stages.

In stage 1, the concept of ‘‘auxiliary modality’’ is introduced in order
to exploit the semantic knowledge in other modalities, and two sub-
networks are constructed based on the coarse-grained and fine-grained
data respectively. Thus, the cross-modal similarity can be calculated
more comprehensively with the multi-modal and multi-grained data.
In stage 2, to optimize the cross-modal similarity more flexibly, a
novel loss function is designed based on the multi-spring balance
system, and it integrates two modules, that is, ‘‘samples selecting’’ and
‘‘weights assigning’’, into a unified framework. In summary, the major
contributions of our work are outlined as follows.

• Multi-modal and Multi-grained Hierarchical Semantic Enhance-
ment network (M2HSE) is proposed to simultaneously mine and
fuse the complementary semantic information distributed in differ-
ent modalities and different granularities, which significantly pro-
motes the performance of cross-modal retrieval through semantic
enhancement.

• Two classes of cross-modal similarity (𝑖.𝑒., primary similarity and
auxiliary similarity) are defined and calculated in M2HSE. To capture
more accurate cross-modal correlations, the valuable semantic knowl-
edge in auxiliary similarity is transferred to primary similarity with
two subnetworks. Furthermore, the final fused primary similarity is
used to perform the cross-modal retrieval.

• Multi-Spring Balance loss (MSB) is proposed to precisely opti-
mize the cross-modal similarity between the anchor and the sample
through two steps. In step 1, the critical area is defined to select the
most representative samples for each anchor. In step 2, the adaptive
weights are learned automatically for different similarities when the
multi-spring balance system reaches its equilibrium state.

The rest of this paper is organized as follows. In Section 2, we
briefly review the related works. In Section 3, we elaborate the pro-
posed M2HSE method. Then, the detailed experiments are conducted
in Section 4. Finally, the whole work is concluded in Section 5.

2. Related works

In this section, we first present a briefly overview of cross-modal
retrieval, then we further discuss the applications of metric learning in
cross-modal retrieval.

2.1. Cross-modal retrieval

In order to bridge the ‘‘heterogeneity gap’’, the mainstream of
cross-modal retrieval methods concentrate on constructing a common
embedding space to assess the cross-modal similarity. The similarities
among different modalities can be directly measured by mapping their
original features into a common embedding space. According to the
characteristics of models, the existing methods can be divided into
non-DNN-based methods and DNN-based methods.

(1) non-DNN-based methods: The key issue of non-DNN-based
methods is to design linear projection functions, which can effectively
project the input features of various modalities into a common space.
Canonical Correlation Analysis (CCA) (Rasiwasia et al., 2010) is the
most typical method for cross-modal retrieval, which learns linear
projection matrices to maximize the pairwise correlations between
heterogeneous data in the subspace. Afterwards, in order to learn
more effective common spaces, several constraints are imposed on
projection function learning. For example, the constraints of relevant
and irrelevant cross-modal correlations (Zhai et al., 2012a), multi-

modal graph regularization (Wang et al., 2015), unified patch graph

https://en.wikipedia.org/wiki/Airplane
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Fig. 1. Illustrating the complementary relationships existing in different modalities and different granularities about the semantic concept of ‘‘airplane’’. (a) Complementary
relationship between different modalities. (b) Complementary relationship between different granularities. Like completing a jigsaw puzzle, the ‘‘heterogeneity gap’’ and the
‘‘granularity gap’’ can be effectively bridged through collecting and combining all semantic pieces that are scattered over multi-modal and multi-grained data.
regularization (Peng et al., 2015), have been confirmed impressive for
cross-modal retrieval.

However, these non-DNN-based methods mainly use the coarse-
grained features extracted from the whole image and full text to
estimate the cross-modal similarity. That is, these methods only con-
sider the global-level information of different modalities. It is worth
mentioning that the fine-grained features of image patches and words
can provide the complementary local-level information, which should
be considered to explore the fine-grained alignments for learning more
thorough cross-modal correlations.

(2) DNN-based methods: Different DNNs have been exploited
in common space learning, such as Convolutional Neural Network
(CNN) (Andrew et al., 2013) and Deep Belief Network (DBN) (Peng,
Qi et al., 2017), for taking the advantage of the powerful ability
on modeling highly nonlinear correlations. Recently, some methods
based on DNNs have become the mainstream of cross-modal retrieval,
including methods based on Attention Mechanism (AM) (Diao et al.,
2021; Lee et al., 2018; Zhang et al., 2022), Graph Convolutional
Network (GCN) (Cheng et al., 2022; Diao et al., 2021; Li et al., 2022),
and Generative Adversarial Network (GAN) (Liu et al., 2022; Wang
et al., 2017; Xu et al., 2020), etc.

As one of the latest advancements in deep learning, AM can be
adopted to attend the discriminative fine-grained parts of different
modalities. As a pioneering work, Stacked Cross Attention Network
(SCAN) (Lee et al., 2018) exploited the cross-attention mechanism to
estimate the cross-modal similarity, which captures the total latent
alignments between visual and textual patches. Thereafter, several
works (Chen et al., 2019; Peng et al., 2019; Zhang et al., 2022)
extended SCAN to achieve better performance. However, these methods
only make use of the inter-modality relationship for the cross-modal
similarity learning.

Inspired by the utilization of Transformer (Vaswani et al., 2017) in
machine translation, many recent works of cross-modal retrieval use it
to mine the contextual information with self-attention mechanism. Wei
et al. (2020) proposed to model the intra-modal relationship for visual
and textual patches based on the self-attention module. Qu et al. (2021)
proposed to aggregate the local-level information within texts based on
the pre-trained BERT (Devlin et al., 2018).
3

Similarly, GCN (Kipf & Welling, 2016) also has been widely used for
reasoning the global semantic knowledge in each modality, in which
the fine-grained data serve as vertices in one or more graphs, and
edges describe the correlations of them. Diao et al. (2021) constructed
a similarity graph reasoning module to infer the image–text similar-
ity with graph reasoning. Li et al. (2022) utilized GCN to establish
communications between visual areas and obtained unique features
with the semantic association knowledge. Cheng et al. (2022) further
achieved the intra-relation and inter-relation reasoning for images and
texts without affecting the search efficiency.

Besides, some cross-modal GAN methods have been proposed to
exploit the adversarial learning strategy (Goodfellow et al., 2020) to
either improve the effectiveness of common embedding learning or
ensure the generation of synthetic features in each modality. Wang
et al. (2017) proposed the adversarial cross-modal retrieval that firstly
adopted the adversarial learning to learn a modality-specific common
space. Gu et al. (2018) proposed a generative cross-modal feature learn-
ing framework, which incorporates the image–text generative module
and the text–image generative module. More recently, Liu et al. (2022)
proposed to simultaneously preserve the intrinsic structure between the
original features and the projected features for images and texts with
two discriminators.

These DNN-based methods calculate the cross-modal similarity with
fine-grained features, which make full use of the local-level informa-
tion. However, they only consider the cross-modal correlations between
two modalities (𝑖.𝑒., the primary modality in our work) that participate
in cross-modal retrieval, while the valuable complementary semantic
knowledge in other modalities (𝑖.𝑒., the auxiliary modality in our work)
are ignored.

In summary, existing methods cannot capture detailed correlations
between different modalities and different granularities to calculate
the cross-modal similarity. Notably, different from the aforementioned
studies, we propose to mine and fuse the complementary semantic
information distributed in multi-modal and multi-grained data to cal-
culate more comprehensive similarity.
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2.2. Metric learning for cross-modal retrieval

Metric learning aims to measure the similarity with a loss function,
which ensures semantical relevant samples be closer, while pushes
irrelevant ones away from each other. In previous literature, a variety
of metric learning methods have been developed for various tasks.

Hadsell et al. (2006) proposed the contrastive loss to learn an
invariant mapping for dimensionality reduction, where similar vectors
are pulled together and dissimilar vectors are pushed apart. Schroff
et al. (2015) proposed the triplet loss for face recognition with an online
triplet mining scheme, which enables the positive similarity to be larger
than the negative similarity with a pre-defined margin. Besides, as
a type of quadruplet loss, the histogram loss (Ustinova & Lempitsky,
2016) can make the distributions of positive and negative similarities
less overlapping without any additional hyper-parameters. Given 𝑁
raining samples, there are 𝑂(𝑁2) pairs, 𝑂(𝑁3) triplets, and 𝑂(𝑁4)
uadruplets, and it is impracticable to traverse all these training tuples
uring training. Therefore, representative samples selecting plays a
ey role in metric learning. Several strategies to select representa-
ive samples have been discussed by many scholars, such as smart
ining (Harwood et al., 2017) and dynamic sampling (Ge, 2018).

However, the above metric learning approaches mainly concentrate
n unimodal related tasks, which cannot precisely capture the relations
etween different modalities. Cross-modal retrieval is generally driven
y metric learning, because it needs to measure the similarity among
amples of different modalities. In recent years, more literature on
ross-modal metric learning appears. Frome et al. (2013) used an
nweighted triplet loss to ensure semantically similar examples closer
o one other by projecting images and texts into a common embedding
pace. Faghri et al. (2017) proposed a hard-triplet loss via mining
he hardest negatives within a mini-batch during training. Liong et al.
2016) proposed a dual perceptron network, which learns two groups
f nonlinear transformations for multi-modal features. However, the
bove works cannot accurately distinguish samples according to their
mportance, and thus result in slow convergence and poor performance.

As revealed by recent works (Chen et al., 2020; Wei, Xu et al.,
021; Wei, Yang et al., 2021), a proper weighting strategy can further
mprove the performance. Chen et al. (2020) proposed a quintuple loss
o adaptively penalize cross-modal similarity by sampling negatives
ffline from the whole training set. Wei, Yang et al. (2021) proposed the
niversal Weighting Framework (UWF), in which the polynomial loss

s used to choose informative negative pairs and then provides accurate
eights for various pairs. Wei, Xu et al. (2021) designed the Meta Self-
aced Network (MSPN) that fully considers the potential interactions
mong different similarities, and automatically estimates the weights
or them.

In summary, there are two critical problems in the process of cross-
odal similarity optimizing: (1) How to select the most representative

amples to accelerate convergence? (2) How to assign accurate weights
or various samples corresponding to their importance to improve
erformance? In this paper, to better cope with the above two prob-
ems simultaneously, we present a novel multi-spring balance loss to
ptimize the cross-modal similarity more accurately using a unified
ramework, in which two modules are integrated. Specifically, the
irst module is samples selecting, and the second module is weights
ssigning.

. Proposed method

In this section, we elaborate the proposed M2HSE method. Firstly,
he problem formulation and the overall framework are presented in
ections 3.1 and 3.2, respectively. Then, we introduce the multi-modal
nd multi-grained feature encoders in Section 3.3. Afterwards, two
ross-modal similarity calculation modules are described detailedly in
ection 3.4. Finally, the proposed MSB loss for cross-modal similarity
ptimization is explained in Section 3.5.
4

.1. Problem formulation

Suppose that there are 𝑁 labeled multi-modal documents with 𝑄
odalities denoted as  = {𝒔1𝑖 , 𝒔

2
𝑖 ,… , 𝒔𝑄𝑖 }

𝑁
𝑖=1, where each document

𝑖 = {𝒔1𝑖 , 𝒔
2
𝑖 ,… , 𝒔𝑄𝑖 } contains 𝑄 samples that describe the same semantic

concept, and each sample belongs to a unique modality. Formally, the
generalized problem definition for cross-modal retrieval is as follows:

Definition 1 (Cross-modal Retrieval). Suppose that a sample 𝒔𝑎𝑖 from
the 𝑎th modality is regarded as a query, the goal of the cross-modal
retrieval is to search the most relevant results from the 𝑏th modality,
where 1 ≤ 𝑎, 𝑏 ≤ 𝑄 and 𝑎 ≠ 𝑏.

In this paper, the multi-modal documents are divided into two
subsets. One is the primary modality set denoted as  = {𝒔𝑎𝑖 , 𝒔

𝑏
𝑖 }

𝑁
𝑖=1,

which provides candidates from two modalities to perform the cross-
modal retrieval. The other is the auxiliary modality set denoted as
 = {𝒔1𝑖 ,… , 𝒔𝑎−1𝑖 , 𝒔𝑎+1𝑖 ,… , 𝒔𝑏−1𝑖 , 𝒔𝑏+1𝑖 ,… , 𝒔𝑄𝑖 }

𝑁
𝑖=1, which contains sam-

ples from the remaining 𝑄− 2 modalities. Then, three related matrices
are defined as follows:

Definition 2 (Primary Similarity Matrix 𝑷 ). The matrix consists of
similarities between samples from different modalities in . For
example, 𝑃𝑖𝑗 represents the cross-modal similarity between 𝒔𝑎𝑖 and 𝒔𝑏𝑗 .

Definition 3 (Auxiliary Similarity Matrix 𝑨). The matrix consists of
similarities between samples from different modalities in  and .
Note that, 𝐴𝑖𝑗 represents the cross-modal similarity between the 𝑖th
sample of a modality in  and the 𝑗th sample of a modality in .

Definition 4 (Cross-modal Affinity Matrix 𝑪). The matrix contains the
supervision information for cross-modal retrieval. If the 𝑖th sample and
the 𝑗th sample belong to different modalities, and they represent the
same semantic concept, 𝐶𝑖𝑗 = +1, otherwise, 𝐶𝑖𝑗 = −1.

In general, baseline methods mainly concentrate on the mutual
retrieval between two modalities in , and they only consider how to
obtain the primary similarity matrix 𝑷 to perform cross-modal retrieval.
However, the complete information of a semantic concept distributes in
all modalities, which means that the valuable semantic information in
 is ignored by existing methods.

Therefore, we innovatively propose to calculate the auxiliary simi-
larity matrix 𝑨, which is jointly optimized with the primary similarity
matrix 𝑷 to capture more cross-modal correlations. Actually, the goal of
our work is to enhance the performance of cross-modal retrieval within
 by leveraging the semantic knowledge gleaned from .

3.2. Framework of M2HSE

We aim to mine and fuse the complementarity in multi-modal and
multi-grained data through the proposed M2HSE, which contains a
global-level subnetwork and a local-level subnetwork. In each subnet-
work, we can calculate one primary similarity matrix and 2(𝑄 − 2)
auxiliary similarity matrices. Afterwards, these matrices are jointly
optimized via our proposed MSB loss with the supervision of the
cross-modal affinity matrix.

Specifically, the global-level objective function  𝐺 and the local-
level objective function  𝐿 are defined as follows:

 𝐺 = (𝑷𝐺 ,𝜣𝐺) +
2(𝑄−2)
∑

𝑖=1
𝛼𝑖(𝑨𝐺

𝑖 ,𝜣
𝐺)

 𝐿 = (𝑷 𝐿,𝜣𝐿) +
2(𝑄−2)
∑

𝑖=1
𝛽𝑖(𝑨𝐿

𝑖 ,𝜣
𝐿)

(1)

where (⋅) is the MSB loss, 𝑷𝐺 is the global-level primary similarity
matrix, {𝑨𝐺| 𝑖 = 1,… , 2(𝑄−2)} are the global-level auxiliary similarity
𝑖 |

|
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matrices, 𝑷 𝐿 is the local-level primary similarity matrix, {𝑨𝐿
𝑖
|

|

|

𝑖 =
,… , 2(𝑄−2)} are the local-level auxiliary similarity matrices. Besides,
𝐺 and 𝜣𝐿 denote the parameters of two subnetworks, and the hyper-
arameters {𝛼𝑖|| 𝑖 = 1,… , 2(𝑄−2)} and { 𝛽𝑖|| 𝑖 = 1,… , 2(𝑄−2)} denote the

multi-modal complementarity adjustment factors in two subnetworks.
In this paper, cross-modal image–text retrieval is adopted to prove

the effectiveness of M2HSE, where CNN features of images and Bi-GRU
features of texts are determined as the primary modalities. Learned
from Wang et al. (2015) and Zheng et al. (2017), the SIFT-BoVW is
one kind of hand-crafted visual features which actually characterizes
the different aspects of images. Inspired by this theory, the SIFT-BoVW
features can be completely regarded as the auxiliary modality. Conse-
quently, we utilize the above three modalities in our work, 𝑖.𝑒., 𝑄 = 3,
then Eq. (1) can be accordingly simplified as follows:

 𝐺 = (𝑷𝐺 ,𝜣𝐺) + 𝛼1(𝑨𝐺
1 ,𝜣

𝐺) + 𝛼2(𝑨𝐺
2 ,𝜣

𝐺)

 𝐿 = (𝑷 𝐿,𝜣𝐿) + 𝛽1(𝑨𝐿
1 ,𝜣

𝐿) + 𝛽2(𝑨𝐿
2 ,𝜣

𝐿)
(2)

where 𝑷𝐺, 𝑨𝐺
1 , 𝑨𝐺

2 are calculated with three kinds of coarse-grained
features by the global-level cross-modal similarity calculation mod-
ule (GCS), which is discussed in Section 3.4.1, and 𝑷 𝐿, 𝑨𝐿

1 , 𝑨𝐿
2 are

calculated with three kinds of fine-grained features by the local-level
cross-modal similarity calculation module (LCS), which is discussed
in Section 3.4.2. By minimizing the objective function  𝐺 and  𝐿,
optimal parameters of two subnetworks are estimated as follows:

𝜣𝐺 = 𝑎𝑟𝑔min
𝜣𝐺

 𝐺

𝜣𝐿 = 𝑎𝑟𝑔min
𝜣𝐿

 𝐿
(3)

Then the optimal primary similarity matrices ̃𝑷𝐺 and 𝑷 𝐿 can be ob-
ained. In practice, we use the gradient descent method (Ruder, 2016)
o accomplish the above optimization procedures of two subnetworks,
espectively. The gradients with respect to parameters 𝜣𝐺 and 𝜣𝐿 are
enoted as follows:

𝜕 𝐺

𝜕𝜣𝐺 =
𝜕(𝑷𝐺 ,𝜣𝐺)

𝜕𝜣𝐺 + 𝛼1
𝜕(𝑨𝐺

1 ,𝜣
𝐺)

𝜕𝜣𝐺 + 𝛼2
𝜕(𝑨𝐺

2 ,𝜣
𝐺)

𝜕𝜣𝐺

𝜕 𝐿

𝜕𝜣𝐿 =
𝜕(𝑷 𝐿,𝜣𝐿)

𝜕𝜣𝐿 + 𝛽1
𝜕(𝑨𝐿

1 ,𝜣
𝐿)

𝜕𝜣𝐿 + 𝛽2
𝜕(𝑨𝐿

2 ,𝜣
𝐿)

𝜕𝜣𝐿

(4)

For simplicity, we take the global-level subnetwork as an example to
llustrate the optimization procedure of parameters 𝜣𝐺 in Algorithm 1.

Finally, in order to investigate the complementary relationship be-
ween multi-grained data, a linear weighted fusion strategy is utilized
o generate the final primary similarity matrix:

̃ = 𝜃1
̃𝑷𝐺 + 𝜃2𝑷 𝐿

.𝑡. 0 ≤ 𝜃1, 𝜃2 ≤ 1
(5)

here �̃� is finally used to perform the cross-modal retrieval, and
he hyper-parameters 𝜃1, 𝜃2 denote the multi-grained complementarity
djustment factors.

The framework of our proposed M2HSE method is illustrated in
ig. 2. There are ten image–text pairs belonging to three semantic
oncepts (𝑖.𝑒., ‘‘airplane’’, ‘‘dog’’, ‘‘bus’’), and the colors of them are
epresented by ‘‘green’’, ‘‘orange’’, ‘‘blue’’ respectively. For each cross-
odal similarity matrix, the first four rows and columns represent the

‘airplane’’, the middle three rows and columns denote the ‘‘dog’’, and
he last three rows and columns refer to the ‘‘bus’’. Then we rank all
lements in each row according to their values, and only the top ranked
nstances that belong to the correct semantic concept are displayed
ith the above pre-defined colors. Like completing a jigsaw puzzle,

hree diagonal blocks can be clearly seen in matrix �̃� after two fusion
perations.

Note that �̃� is the result of semantic enhancement, which not only
omprehensively contains the complementary semantic information
xisting in multi-modal and multi-grained data, but also is optimized
ccurately via the proposed MSB loss.
5

a

Algorithm 1 The optimization procedure of the global-level subnet-
work in M2HSE.
Input: The training set 𝛺 = {(𝐼𝑖, 𝑇𝑖)}𝑁

𝑡

𝑖=1, the validation set 𝛷 =
{(𝐼𝑖, 𝑇𝑖)}𝑁

𝑣

𝑖=1, the number of epochs 𝐸, the batch size 𝐵, the learning
rate 𝜂 and the hyper-parameters 𝛼1, 𝛼2, 𝛾1, 𝛾2.

Output: The optimized parameters 𝜣𝐺 of the global-level subnetwork.
1: Initialize parameters 𝜣𝐺 of the global-level network and set

𝑚𝐴𝑃𝑚𝑎𝑥 = 0;
2: for 𝛿 = 1, 2,… , 𝐸 do
3: for 𝜌 = 1, 2,… , ⌈𝑁 𝑡∕𝐵⌉ do
4: Randomly sample 𝐵 image–text pair from 𝛺 to

construct a mini-batch with 𝑪 ;
5: Compute {𝒙𝐺𝑖 , 𝒚

𝐺
𝑖 , 𝒛

𝐺
𝑖 }

𝐵
𝑖=1, then construct 𝑷𝐺,

𝑨𝐺
1 , 𝑨𝐺

2 ;
6: Compute the result of  𝐺 in Eq. (2), and calculate

the gradients ▿𝜣𝐺 according to Eq. (4);
7: Update the parameters 𝜣𝐺 through:

𝜣𝐺 ← 𝜣𝐺 − 𝜂▿𝜣𝐺 ;
8: end for
9: Validate the performance of the current model on 𝛷

to obtain 𝑚𝐴𝑃 𝑐𝑢𝑟𝑟;
10: if 𝑚𝐴𝑃 𝑐𝑢𝑟𝑟 > 𝑚𝐴𝑃𝑚𝑎𝑥 then
11: 𝑚𝐴𝑃𝑚𝑎𝑥 = 𝑚𝐴𝑃 𝑐𝑢𝑟𝑟;
12: 𝜣𝐺 = 𝜣𝐺;
13: end if
14: end for

3.3. Feature encoders

Suppose that an image–text dataset {(𝐼𝑖, 𝑇𝑗 )}𝑁𝑖,𝑗=1 consists of 𝑁 pairs,
where 𝐼𝑖 and 𝑇𝑗 are the 𝑖th image and the 𝑗th text respectively. We first
extract three kinds of coarse-grained and fine-grained features. Then we
encode them as feature vectors in a common embedding space.

3.3.1. Primary modality 1: CNN
Pre-trained convolutional neural networks (CNNs) with large scale

datasets like ImageNet (Deng et al., 2009), have been highlighted to be
effective in catching the discriminative information for images.

In our work, the coarse-grained feature vector of image 𝐼𝑖 is denoted
as 𝒗𝐺𝑖 ∈ R𝑑1 , and a set of fine-grained feature vectors of 𝐼𝑖 is represented
as 𝑽 𝐿

𝑖 = {𝒗𝐿𝑖,𝑝
|

|

|

𝑝 = 1,… , 𝑛, 𝒗𝐿𝑖,𝑝 ∈ R𝑑1}. Note that the CNN feature space
as 𝑑1 dimensions and each image has 𝑛 patches. In the global-level
ubnetwork, the coarse-grained feature vector of image 𝐼𝑖 is projected
nto a 𝑑-dimensional embedding space via the fully-connect layer:
𝐺
𝑖 = 𝑾 𝐺 ∗ 𝒗𝐺𝑖 + 𝒃𝐺 (6)

Similarly, in the local-level subnetwork, the fine-grained feature
ector of the 𝑗th patch in image 𝐼𝑖 is also projected into a 𝑑-dimensional
mbedding space as follows:
𝐿
𝑖,𝑝 = 𝑾 𝐿 ∗ 𝒗𝐿𝑖,𝑝 + 𝒃𝐿 (7)

here 𝑾 𝐺, 𝑾 𝐿 and 𝒃𝐺, 𝒃𝐿 refer to the weight matrices and bias terms
hat are required to be optimized.

Thus, we obtain the coarse-grained CNN feature vector 𝒙𝐺𝑖 ∈
𝑑 , and a set of fine-grained CNN feature vectors 𝑿𝐿

𝑖 = {𝒙𝐿𝑖,𝑝
|

|

|

𝑝 =
,… , 𝑛,𝒙𝐿𝑖,𝑝 ∈ R𝑑} for image 𝐼𝑖.

.3.2. Primary modality 2: Bi-GRU
Recently, a series of word embedding technologies, such as

ord2vec (Mikolov et al., 2013), RNN (Hochreiter & Schmidhuber,
997), have been introduced to model textual features, and perform

mazingly in a wide range of tasks.
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Fig. 2. The overall framework of our proposed M2HSE method. It includes a global-level subnetwork (left half) and a local-level subnetwork (right half) to mine and fuse the
complementarity in multi-modal and multi-grained data for semantic enhancement. GCS and LCS are designed to calculate the cross-modal similarity matrix with coarse-grained
and fine-grained features, respectively. Besides,  𝐺 and  𝐿 are defined to jointly optimize the primary similarity and auxiliary similarity based on the proposed MSB loss.
Therefore, as a variant of RNNs, the Gated Recurrent Unit (GRU)
(Cho et al., 2014) is adopted to fully mine the context information of
words during learning the word embeddings. For text 𝑇𝑗 , we suppose
that it is composed of 𝑚 words, and the 𝑞th word in 𝑇𝑗 is represented as
a 𝑑′-dimensional one-hot vector 𝒆𝑗,𝑞 , ∀𝑞 ∈ [1, 𝑚]. Specifically, 𝑑′ refers
to the total number of words in the dictionary, and just the position that
exactly corresponds to the word is set 1 in 𝒆𝑗,𝑞 , while other positions
are set 0. Next, each word is embedded into a continuous space by a
mapping matrix 𝑾 𝑒: 𝒘𝑗,𝑞 = 𝑾 𝑒𝒆𝑗,𝑞 , and 𝒘𝑗,𝑞 ∈ R𝑑2 is the embedding
vector for the 𝑞th word in text 𝑇𝑗 with 𝑑2 dimensions.

To directly compare image and text features, we also map the text
features into a 𝑑-dimensional embedding space. The Bi-directional GRU
(Bi-GRU) is adopted to model textual context in text 𝑇𝑗 in two different
directions, and ⃖⃗𝒉𝑗,𝑞 , ⃖⃖𝒉𝑗,𝑞 are used to indicate the GRU’s hidden states
(forward and backward) as follows:
⃖⃗𝒉𝑗,𝑞 = ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑮𝑹𝑼 (𝒘𝑗,𝑞 , ⃖⃗𝒉𝑗,𝑞−1)
⃖⃖𝒉𝑗,𝑞 = ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖𝑮𝑹𝑼 (𝒘𝑗,𝑞 , ⃖⃖𝒉𝑗,𝑞+1)

(8)

Afterwards, the feature vector 𝒚𝑗,𝑞 for the 𝑞th word in text 𝑇𝑗 is
computed with 𝒚𝑗,𝑞 = ( ⃖⃗𝒉𝑗,𝑞 + ⃖⃖𝒉𝑗,𝑞)∕2.

Thus, in the global-level subnetwork, the coarse-grained Bi-GRU
feature vector of text 𝑇𝑗 is generated via averaging all word vectors,
that is, 𝒚𝐺𝑗 = 1

𝑚
∑𝑚

𝑞=1 𝒚
𝐺
𝑗,𝑞 . In the local-level subnetwork, a set of fine-

grained Bi-GRU feature vectors for 𝑇𝑗 is represented as 𝒀 𝐿
𝑗 = {𝒚𝐿𝑗,𝑞

|

|

|

𝑞 =
1,… , 𝑚, 𝒚𝐿 ∈ R𝑑}.
6

𝑗,𝑞
3.3.3. Auxiliary modality: SIFT-BoVW
Scale Invariant Feature Transform (SIFT) (Lowe, 2004) is a kind of

local feature, and it has been widely and successfully utilized in image
processing. In our work, the SIFT descriptor is integrated with the Bag-
of-Visual-Words (BoVW) (Csurka et al., 2004) model, and the process of
extracting the SIFT-based BoVW (SIFT-BoVW) features is divided into
the following two steps.

Step 1: Codebook construction. Firstly, a vocabulary is established
through clustering visual features of images. Secondly, the codebook
model is constructed by describing an image as a bag of visual words
that are chosen from the vocabulary, where the occurrence frequency
of visual words can represent visual features of images. Specifically,
we suppose that a pool of 128-d SIFT descriptors {𝒇𝑘}𝐷𝑘=1 are extracted
from the training set, where 𝐷 is the total number of them. 𝐾-means is
used to partition the 𝐷 points into 𝐾 clusters, and the centroid of each
cluster is corresponding to a visual word.

Step 2: Feature extraction. Firstly, SIFT descriptors of image 𝐼𝑖
and its 𝑛 patches are extracted, which are denoted as {𝒇𝑘}

𝑔
𝑘=1 and

{ {𝒇𝑘}
𝑙𝑝
𝑘=1

|

|

|

𝑝 = 1,… , 𝑛} respectively, where {𝒇𝑘}
𝑙𝑝
𝑘=1 are extracted from

the 𝑝th patch of 𝐼𝑖. Secondly, {𝒇𝑘}
𝑔
𝑘=1 are encoded according to their

distances to the visual words in the codebook, and the SIFT descriptor
is represented as its nearest visual word. Then, the occurrences of visual
words in 𝐼𝑖 are used to construct a histogram, which represents the 𝑑3-
dimensional (𝑑3 = 𝐾) coarse-grained feature vector 𝒃𝐺𝑖 ∈ R𝑑3 . Similarly,
for {𝒇 }

𝑙𝑝 , the corresponding fine-grained feature vector 𝒃𝐿 ∈ R𝑑3
𝑘 𝑘=1 𝑖,𝑝
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Fig. 3. The flowchart of cross-modal similarity calculation. GCS and LCS are based on three coarse-grained features (𝑖.𝑒., 𝒙𝐺
𝑖 , 𝒚

𝐺
𝑗 , 𝒛

𝐺
𝑖 ) and three fine-grained features (𝑖.𝑒., 𝑿𝐿

𝑖 , 𝒀
𝐿
𝑗 ,𝒁

𝐿
𝑖 ),

respectively. In LCS, there are six cross attention embedding spaces in pairs: ① 𝑿𝐿 → 𝒀 𝐿 and ② 𝒀 𝐿 → 𝑿𝐿, ③ 𝑿𝐿 → 𝒁𝐿 and ④ 𝒁𝐿 → 𝑿𝐿, ⑤ 𝒀 𝐿 → 𝒁𝐿 and ⑥ 𝒁𝐿 → 𝒀 𝐿, which
are constructed to capture more fine-grained correlations between multi-modal data. Details of ① 𝑿𝐿 → 𝒀 𝐿 and ② 𝒀 𝐿 → 𝑿𝐿 are shown to illustrate the calculation process of
local-level primary similarity, and the remaining four cross attention embedding spaces are similar.
can also obtained. Thus, a set of fine-grained feature vectors of image
𝐼𝑖 is denoted as 𝑩𝐿

𝑖 = {𝒃𝐿𝑖,𝑝
|

|

|

𝑝 = 1,… , 𝑛, 𝒃𝐿𝑖,𝑝 ∈ R𝑑3}.
Then, just like Eqs. (6) and (7), fully-connect layers are adapted to

map these features into a 𝑑-dimensional embedding space. Afterwards,
we obtain the coarse-grained SIFT-BoVW feature vector 𝒛𝐺𝑖 ∈ R𝑑

and a set of fine-grained SIFT-BoVW feature vectors 𝒁𝐿
𝑖 = {𝒛𝐿𝑖,𝑝

|

|

|

𝑝 =
1,… , 𝑛, 𝒛𝐿𝑖,𝑝 ∈ R𝑑} for image 𝐼𝑖.

3.4. Cross-modal similarity calculation

There are two modules, GCS and LCS, which are designed to com-
prehensively calculate the cross-modal similarity with multi-modal and
multi-grained features. In each module, we calculate one primary sim-
ilarity matrix and two auxiliary similarity matrices. Notably, to learn
more precise local-level correlations between multi-modal data, the at-
tention mechanism is adopted in LCS to fully aggregate the fine-grained
matches between visual patches and words.

As shown in Fig. 3, given image 𝐼𝑖 and text 𝑇𝑗 , we illustrate how to
calculate the cross-modal similarity at the global-level and the local-
level, respectively. Moreover, to make a clear distinction between
different granularities, the data streams of coarse-grained and fine-
grained instances are represented as solid arrows and dotted arrows,
respectively.

3.4.1. GCS: global-level cross-modal similarity calculation module
Three kinds of coarse-grained feature vectors (𝑖.𝑒., 𝒙𝐺 , 𝒚𝐺 and 𝒛𝐺)
7

are input to GCS. Specifically, as the element at the 𝑖th row and
𝑗th column of the global-level primary similarity matrix, 𝑷𝐺(𝑖, 𝑗) is
calculated as follows:

𝑃𝐺(𝑖, 𝑗) = 𝑠𝑖𝑚𝐺(𝒙𝐺𝑖 , 𝒚
𝐺
𝑗 ) =

𝒙𝐺𝑖
𝖳𝒚𝐺𝑗

‖𝒙𝐺𝑖 ‖ ⋅ ‖𝒚
𝐺
𝑗 ‖

(9)

where 𝒙𝐺𝑖 and 𝒚𝐺𝑗 represent the coarse-grained CNN feature vector of
𝐼𝑖, and the coarse-grained Bi-GRU feature vector of 𝑇𝑗 , respectively.

Similarly, the elements at the 𝑖th row and 𝑗th column of the global-
level auxiliary matrices 𝐴𝐺

1 (𝑖, 𝑗) and 𝐴𝐺
2 (𝑖, 𝑗) are defined as follows:

𝐴𝐺
1 (𝑖, 𝑗) = 𝑠𝑖𝑚𝐺(𝒙𝐺𝑖 , 𝒛

𝐺
𝑗 ) =

𝒙𝐺𝑖
𝖳𝒛𝐺𝑗

‖𝒙𝐺𝑖 ‖ ⋅ ‖𝒛
𝐺
𝑗 ‖

𝐴𝐺
2 (𝑖, 𝑗) = 𝑠𝑖𝑚𝐺(𝒚𝐺𝑖 , 𝒛

𝐺
𝑗 ) =

𝒚𝐺𝑖
𝖳𝒛𝐺𝑗

‖𝒚𝐺𝑖 ‖ ⋅ ‖𝒛
𝐺
𝑗 ‖

(10)

where 𝒛𝐺𝑗 represents the coarse-grained SIFT-BoVW feature vector of 𝐼𝑗 .

3.4.2. LCS: local-level cross-modal similarity calculation module
Correspondingly, three kinds of fine-grained feature vectors

(𝑖.𝑒., 𝑿𝐿, 𝒀 𝐿 and 𝒁𝐿) are input to LCS. Inspired by SCAN (Lee et al.,
2018), we construct some cross attention embedding spaces in pairs
to measure the local-level cross-modal similarity. Instead of learning
different spaces independently like SCAN, we jointly learn six cross
attention embedding spaces to capture the latent alignments between
any two kinds of fine-grained features.

Specifically, 𝑃𝐿(𝑖, 𝑗) represents the element at the 𝑖th row and
the 𝑗th column of the local-level primary similarity matrix, which is
computed with two cross attention embedding spaces (𝑖.𝑒., ① 𝑿𝐿 → 𝒀 𝐿
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and ② 𝒀 𝐿 → 𝑿𝐿) as follows:

𝑃𝐿(𝑖, 𝑗) = 𝑠𝑖𝑚𝐿(𝑿𝐿
𝑖 , 𝒀

𝐿
𝑗 )

= 𝑠𝑖𝑚𝐿
𝑿𝐿→𝒀 𝐿 (𝑿

𝐿
𝑖 , 𝒀

𝐿
𝑗 ) + 𝑠𝑖𝑚𝐿

𝒀 𝐿→𝑿𝐿 (𝑿
𝐿
𝑖 , 𝒀

𝐿
𝑗 )

(11)

where 𝑿𝐿
𝑖 is a set of fine-grained CNN feature vectors of 𝐼𝑖, and 𝒀 𝐿

𝑗 is
a set of fine-grained Bi-GRU feature vectors of 𝑇𝑗 .

Similarly, the elements at the 𝑖th row and the 𝑗th column of the
local-level auxiliary matrices 𝑨𝐿

1 and 𝑨𝐿
2 are calculated as follows:

𝐴𝐿
1 (𝑖, 𝑗) = 𝑠𝑖𝑚𝐿(𝑿𝐿

𝑖 ,𝒁
𝐿
𝑗 )

= 𝑠𝑖𝑚𝐿
𝑿𝐿→𝒁𝐿 (𝑿

𝐿
𝑖 ,𝒁

𝐿
𝑗 ) + 𝑠𝑖𝑚𝐿

𝒁𝐿→𝑿𝐿 (𝑿
𝐿
𝑖 ,𝒁

𝐿
𝑗 )

𝐴𝐿
2 (𝑖, 𝑗) = 𝑠𝑖𝑚𝐿(𝒀 𝐿

𝑖 ,𝒁
𝐿
𝑗 )

= 𝑠𝑖𝑚𝐿
𝒀 𝐿→𝒁𝐿 (𝒀

𝐿
𝑖 ,𝒁

𝐿
𝑗 ) + 𝑠𝑖𝑚𝐿

𝒁𝐿→𝒀 𝐿 (𝒀
𝐿
𝑖 ,𝒁

𝐿
𝑗 )

(12)

where 𝒁𝐿
𝑗 is a set of fine-grained SIFT-BoVW feature vectors of the 𝐼𝑗 .

There are six types of cross-modal similarity in Eqs. (11) and (12),
nd each type of similarity is corresponding to a specific cross attention
mbedding space. For simplicity, we take 𝑿𝐿 → 𝒀 𝐿 cross attention em-
edding space as an example to explain how to calculate the local-level
ross-modal similarity 𝑠𝑖𝑚𝐿

𝑿𝐿→𝒀 𝐿 (𝑿
𝐿
𝑖 , 𝒀

𝐿
𝑗 ) as follows.

Specifically, given image 𝐼𝑖 with 𝑛 patches and text 𝑇𝑗 with 𝑚 words,
to uncover associations among all possible pairs, a cosine similarity
matrix 𝑼 is initially constructed with 𝑿𝐿

𝑖 and 𝒀 𝐿
𝑗 . Particularly, 𝑈𝑝𝑞 =

𝒙𝖳𝑖,𝑝𝒚𝑗,𝑞
‖𝒙𝑖,𝑝‖⋅‖𝒚𝑗,𝑞‖

,∀𝑝 ∈ [1, 𝑛],∀𝑞 ∈ [1, 𝑚] denotes the similarity between the 𝑝th
atch and the 𝑞th word, where 𝒙𝑖,𝑝 is the feature vector of the 𝑝th patch

in 𝐼𝑖, and 𝒚𝑗,𝑞 is the feature vector of the 𝑞th word in 𝑇𝑗 . Then, 𝑼 is
normalized according to its column dimension �̄�𝑝𝑞 = 𝑟𝑒𝑙𝑢(𝑈𝑝𝑞 )

√

∑𝑛
𝑝=1 𝑟𝑒𝑙𝑢(𝑈𝑝𝑞 )2

,

here 𝑟𝑒𝑙𝑢(𝑥) = max(0, 𝑥).
Next, for the 𝑝th patch of 𝐼𝑖, the textual context feature vector 𝒄𝑖,𝑝 =

∑𝑚
𝑞=1 𝛼𝑝𝑞𝒚𝑗,𝑞 is defined as a weighted integration with representations

of words using the attention mechanism, where 𝛼𝑝𝑞 = 𝑒𝑥𝑝(𝜆�̄�𝑝𝑞 )
∑𝑚

𝑞=1 𝑒𝑥𝑝(𝜆�̄�𝑝𝑞 )
s satisfied. Especially, 𝜆 is the temperature-inverse parameter in the
oftmax function to adjust the smoothness of the attention distribution.
fterwards, to assess the significance of each image patch given the text
ontext, we compute the relevance score between 𝒙𝑖,𝑝 and 𝒄𝑖,𝑝 by cosine

unction 𝑟(𝒙𝑖,𝑝, 𝒄𝑖,𝑝) =
𝒙𝖳𝑖,𝑝𝒄𝑖,𝑝

‖𝒙𝑖,𝑝‖⋅‖𝒄𝑖,𝑝‖
. Consequently, the similarity between

𝑿𝐿
𝑖 and 𝒀 𝐿

𝑗 is obtained by averaging all relevance scores:

𝑠𝑖𝑚𝐿
𝑿𝐿→𝒀 𝐿 (𝑿

𝐿
𝑖 , 𝒀

𝐿
𝑗 ) =

1
𝑛

𝑛
∑

𝑝=1
𝑟(𝒙𝑖,𝑝, 𝒄𝑖,𝑝) (13)

In addition, the procedures of calculating other five types local-
evel cross-modal similarities are analogous to the above. Finally, we
btain three global-level cross-modal similarity matrices 𝑷𝐺, 𝑨𝐺

1 , 𝑨𝐺
2 ,

and three local-level cross-modal similarity matrices 𝑷 𝐿, 𝑨𝐿
1 , 𝑨𝐿

2 with
CS and LCS, respectively.

To capture more accurate cross-modal correlations, each primary
imilarity matrix is jointly optimized with two auxiliary similarity
atrices via the MSB loss in the corresponding subnetwork. Afterwards,

he final fused primary similarity matrix is used to perform cross-modal
etrieval.

.5. Cross-modal similarity optimization

A novel multi-spring balance loss is proposed to optimize the cross-
odal similarity more accurately through two steps. In step 1, we
ropose to select representative samples for optimizing, which ensures
ot only the available information is fully utilized, but also the time ef-
iciency is greatly improved. In step 2, we design an adaptive similarity
eighting strategy based on the multi-spring balance system, which can
ccurately discriminate the selected representative samples according
o their significance.

The framework of our proposed MSB loss is illustrated in Fig. 4.
8

irstly, four positive samples and five negative samples are selected
from the critical area (see Definition 5), and the unselected samples
no longer need to be optimized. Then, the selected positive and neg-
ative samples are used to construct two kinds of multi-spring balance
systems, in which the elastic coefficient of each spring is estimated with
the cross-modal similarity between the anchor and the selected sample.
Finally, the selected positive and negative samples are drawn close
to or pushed away from the anchor according to the adaptive weight
values, which are obtained when the multi-spring balance systems
reach the equilibrium states. The following are the details of the two
steps mentioned above.

Step 1: Representative Samples Selecting. In cross-modal re-
rieval, given an image/text query as the anchor, text/image candidates
re treated as positive samples when they belong to the same semantic
oncept with the anchor, otherwise, they are regarded as negative
amples. We consider that both positive samples with higher similarity
o anchors and negative samples with smaller similarity to anchors
ontain less information for optimization (the parameters of model
ave been appropriately fitted to them). For each anchor, we propose
o select informative positive and negative samples to optimize during
he training stage.

Formally, suppose that there is a cross-modal similarity matrix 𝑴
ith the corresponding cross-modal affinity matrix 𝑪 . If 𝐶𝑖𝑗 = +1,

let 𝑀+
𝑖𝑗 denote the similarity between anchor 𝒔𝑖 and positive sample

+
𝑗 , otherwise, if 𝐶𝑖𝑗 = −1, the similarity between 𝒔𝑖 and the negative
ample 𝒔−𝑗 is represented as 𝑀−

𝑖𝑗 . As shown in Fig. 4, for a fixed anchor
𝑖 within a mini-batch, the hardest positive sample is the furthest one

from 𝒔𝑖 compared to all positive samples, thus, the similarity between
the hardest positive sample and 𝒔𝑖 is lowest in all positive pairs, which
is represented as 𝐻+

𝑖 .

𝐻+
𝑖 = min

𝐶𝑖𝑘=+1
𝑀+

𝑖𝑘 (14)

Besides, the hardest negative sample is the nearest one from 𝒔𝑖 com-
ared to all negative samples, which has the highest similarity 𝐻−

𝑖 with
𝑖 in all negative pairs.
−
𝑖 = max

𝐶𝑖𝑘=−1
𝑀−

𝑖𝑘 (15)

Utilizing the hardest positive and negative samples, the definition
f the critical area is given as follows.

efinition 5 (Critical Area). For each anchor 𝒔𝑖, the outer and inner
oundaries of the critical area are determined by the hardest positive
nd negative samples, respectively. For the positive sample 𝒔+𝑗 in the
ritical area, the similarity 𝑀+

𝑖𝑗 satisfies the condition: 𝑀+
𝑖𝑗 < 𝐻−

𝑖 ,
therwise, for the negative sample 𝒔−𝑗 in the critical area, the similarity
−
𝑖𝑗 satisfies the condition: 𝑀−

𝑖𝑗 > 𝐻+
𝑖 .

We propose to select samples from the critical area, which means
hat unselected samples outside the critical area will be filtered out.
fterwards, considering the critical area, we provide the redefinition
f the cross-modal affinity matrix �̃� as follows:

̃𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

+1 if 𝒔𝑗 is a positive sample in the critical area,
−1 if 𝒔𝑗 is a negative sample in the critical area,
0 if 𝒔𝑗 is not in the critical area.

(16)

here for the anchor 𝒔𝑖, the affinity �̃�𝑖𝑗 between it and a sample 𝒔𝑗
outside the critical area is changed into 0, whether 𝒔𝑗 is positive or
negative. Furthermore, in step 2, we discard the samples corresponding
to all zero-valued elements in �̃�, and only select the representative
samples in the critical area for optimization.

Step 2: Representative Samples Discriminating. As a visualiza-
tion technology, the implementation principle of RadViz (Hoffman
et al., 1997) is inspired by the multi-spring balance system, which
follows the elastic force balance theorem of objects in physics. As
shown in Fig. 5, there are 𝑛 springs uniformly locating at a circle in

a two-dimensional coordinate system. We suppose that the original
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Fig. 4. Framework of the MSB loss for optimizing the cross-modal similarity. For each anchor, the representative samples are selected from the critical area in Step 1, then they are
accurately discriminated based on two multi-spring balance systems in Step 2. For the selected samples, the forces of their corresponding springs and the penalty strengths for them
are presented as different colorful arrows, where blue is for positive samples, while orange is for negative samples. Note that the length and width of the arrows approximately
give the magnitude of the force and strength of the penalty.
Fig. 5. Schematic diagram of the multi-spring balance system. The elastic force of all
springs makes the point continuously move until it reaches the equilibrium state, then
the deformation of each spring can be estimated according to the vector operation
principle.

length of each spring is zero and the other ends of all springs are fixed
to the same point, which is initially located at the center of the circle.
Given the 𝑖th point, the position vector and the elastic coefficient of
the 𝑗th spring are represented as 𝑺 𝑖𝑗 and 𝐾𝑖𝑗 , respectively. Then, the
elastic force of all springs makes the 𝑖th point continuously move until
it reaches the equilibrium state, which means that the point is static
now and the resultant force of all springs is zero. Let 𝑬𝑖 denote the
position vector of the 𝑖th point at the equilibrium state.

Hooke’s law states that the elastic force 𝑭 required to compress or
stretch a spring via its deformation 𝑿 scales according to the distance in
a linear mode. That is to say, 𝑭 = 𝐾𝑿, where 𝐾 is the elastic coefficient
of the spring. Therefore, according to Hooke’s Law, for the 𝑖th point,
the elastic force of the 𝑗th spring is represented as 𝐾𝑖𝑗 (𝑺 𝑖𝑗 −𝑬𝑖), where
the vector 𝑺 𝑖𝑗 −𝑬𝑖 represents the elastic deformation of the 𝑗th spring.
Consequently, the resultant force of all springs on the 𝑖th point at the
equilibrium state is zero:
𝑛
∑

𝐾𝑖𝑗 (𝑺 𝑖𝑗 − 𝑬𝑖) = 0 (17)
9

𝑗=1
Thus, the relationship between 𝑬𝑖 and 𝑺 𝑖𝑗 can be represented as
follows:

𝑬𝑖 =
𝑛
∑

𝑗=1
𝑤𝑖𝑗𝑺 𝑖𝑗 (18)

𝑤𝑖𝑗 =
𝐾𝑖𝑗

∑𝑛
𝑗=1 𝐾𝑖𝑗

(19)

where 𝑤𝑖𝑗 is the adaptive weight value. Especially, 𝑤𝑖𝑗 represents the
relative significance of the 𝑗th spring compared with all other springs
according to their elastic coefficients. Furthermore, for the 𝑖th point, 𝑤𝑖𝑗
also reveals the relative contribution of the 𝑗th spring in its balancing
process.

For an anchor, the amount of information contained in its selected
representative samples is unbalanced. Thus, we intuitively deem that
the penalty strength for cross-modal similarities between anchor and
them should be different. If a similarity score significantly deviates
from the ideal, it should be penalized severely. Otherwise, if a similarity
score is close to the ideal, it should be moderately optimized. With
these insights, we aim to precisely discriminate the selected samples
via an adaptive similarity weighting strategy based on the multi-spring
balance system.

Concretely, the selected sample 𝒔𝑗 of anchor 𝒔𝑖 is corresponding
to the 𝑗th spring, and its elastic coefficient is used to represent the
importance score of sample 𝒔𝑗 on anchor 𝒔𝑖, which is defined as follows:

𝐾𝑖𝑗 = 𝐺(�̃�𝑖𝑗 ,𝑀𝑖𝑗 ), if �̃�𝑖𝑗 ≠ 0. (20)

where 𝐺(⋅) is a function that generates the importance score for the
selected sample according to the cross-modal similarity.

Considering that the importance score of a positive sample decreases
when the cross-modal similarity between it and the anchor increases.
On the contrary, the importance score of a negative sample increases
as the cross-modal similarity between it and the anchor increases.
In order to coincide with the above two opposite changing trends
of importance scores, we choose the exponential function to describe
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the relationship between the importance score and the cross-modal
similarity. Therefore, function 𝐺(⋅) is defined as follows:

𝐺(�̃�𝑖𝑗 ,𝑀𝑖𝑗 ) = 𝑒𝑥𝑝(�̃�𝑖𝑗 (𝛾2 − 𝛾1𝑀𝑖𝑗 )) (21)

where 𝛾1 and 𝛾2 are hyper-parameters to let the MSB loss more flexible
and adaptable. It can be observed from Eqs. (20) and (21) that the
higher the cross-modal similarity between the negative sample and the
anchor, the greater the elastic coefficient of the corresponding spring
will be. However, the changing rule of the elastic coefficient for the
positive sample is just the opposite of the negative one.

Therefore, due to different optimization directions for positive and
negative samples, we build two multi-spring balance systems for each
anchor. One is for the selected positive samples, and the other is for the
selected negative samples. Specifically, 𝑤+

𝑖𝑗 refers to the weight value
for the selected positive sample 𝒔+𝑗 of anchor 𝒔𝑖, and 𝑤−

𝑖𝑗 is the weight
alue for the selected negative sample 𝒔−𝑗 of anchor 𝒔𝑖. 𝑤+

𝑖𝑗 and 𝑤−
𝑖𝑗 are

omputed as follows:

+
𝑖𝑗 =

𝐾𝑖𝑗
∑

�̃�𝑖𝑘=+1 𝐾𝑖𝑘
(22)

𝑤−
𝑖𝑗 =

𝐾𝑖𝑗
∑

�̃�𝑖𝑘=−1 𝐾𝑖𝑘
(23)

In the following part, we take the optimization process of the
similarity matrix 𝑴 as an example to elaborate the proposed MSB loss.
Notably, with the consideration that the reflexivity of the query and
candidate, there are two directions in cross-modal retrieval, which is
presented as follows:

(𝑴 ,𝜣) =

The 𝑎th modality queries the 𝑏th modality
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

1
𝛾1

1
𝐵

𝐵
∑

𝑖=1

⎧

⎪

⎨

⎪

⎩

ln
⎡

⎢

⎢

⎣

∑

�̃�𝑖𝑘=+1

𝐾𝑖𝑘

⎤

⎥

⎥

⎦

+ ln
⎡

⎢

⎢

⎣

∑

�̃�𝑖𝑘=−1

𝐾𝑖𝑘

⎤

⎥

⎥

⎦

⎫

⎪

⎬

⎪

⎭

+

The 𝑏th modality queries the 𝑎th modality
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

1
𝛾1

1
𝐵

𝐵
∑

𝑖=1

⎧

⎪

⎨

⎪

⎩

ln
⎡

⎢

⎢

⎣

∑

�̃�𝖳
𝑖𝑘=+1

𝐾∗
𝑖𝑘

⎤

⎥

⎥

⎦

+ ln
⎡

⎢

⎢

⎣

∑

�̃�𝖳
𝑖𝑘=−1

𝐾∗
𝑖𝑘

⎤

⎥

⎥

⎦

⎫

⎪

⎬

⎪

⎭

(24)

here 𝐵 is the size of the mini-batch in training, 𝜣 is the parameters of
he deep neural network, and 𝐾∗

𝑖𝑘 = 𝐺(�̃�𝖳
𝑖𝑘,𝑀

𝖳
𝑖𝑘), if �̃�𝖳

𝑖𝑗 ≠ 0. Specifically,
𝑴 is corresponding to the cross-modal retrieval that the 𝑎th modality
queries the 𝑏th modality. Particularly, 𝑀𝑖𝑗 represents the cross-modal
similarity between sample 𝒔𝑎𝑖 of the 𝑎th modality and sample 𝒔𝑏𝑗 of the
𝑏th modality. Differently, 𝑴𝖳 represents the opposite direction of cross-
modal retrieval. According to the chain rule of the composite function,
we have:

𝜕(𝑴 ,𝜣)
𝜕𝜣

=
𝜕(𝑴 ,𝜣)

𝜕𝑴
𝜕𝑴
𝜕𝜣

=
𝐵
∑

𝑖=1

𝐵
∑

𝑗=1

𝜕(𝑴 ,𝜣)
𝜕𝑀𝑖𝑗

𝜕𝑀𝑖𝑗

𝜕𝜣
(25)

Remarkably, as indicated in Eq. (25), the gradient of the loss func-
ion is a weighted summation about the gradients of all similarities,
nd 𝜕(𝑴 ,𝛩)

𝜕𝑀𝑖𝑗
is used as weight. We believe that the influence of each

𝑀𝑖𝑗 in computing the gradient of a loss function is worthy of being
distinguished, hence, we exploit the above two multi-spring balance
systems to discriminate the selected positive and negative samples,
respectively.

As the MSB loss encourages positive samples to be closer to the
anchor, and negative samples to be farther away from the anchor, we
can obtain that 𝜕(𝑴 ,𝛩)

𝜕𝑀𝑖𝑗
≤ 0 when �̃�𝑖𝑗 = +1, while 𝜕(𝑴 ,𝛩)

𝜕𝑀𝑖𝑗
≥ 0 when

̃𝑖𝑗 = −1. Consequently, we have the following equation:

𝜕(𝑴 ,𝜣)
𝜕𝑀

=

{

−𝑤+
𝑖𝑗 if �̃�𝑖𝑗 = +1,
− ̃ (26)
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𝑖𝑗 𝑤𝑖𝑗 if 𝐶𝑖𝑗 = −1.
According to the calculus theory, we can obtain the primitive integral
with Eq. (26). Details of the derivation process of MSB loss (𝑖.𝑒., (⋅))
are presented in Appendix A.

The MSB loss can effectively mine the informative samples for
discriminative optimization, which is a more flexible and efficient loss
function for cross-modal retrieval. In our global-level and local-level
subnetworks, the MSB loss is applied to optimize all primary and
auxiliary similarity matrices.

4. Experiment

In this section, we conduct a series of experiments on several
benchmark multi-modal datasets and compare the performance with
18 state-of-the-art methods to verify the effectiveness of our proposed
M2HSE method. Furthermore, parameter sensitivity and convergence
analysis are presented, as well as the ablation studies to testify the
contribution of each component in M2HSE.

4.1. Datasets and evaluation metrics

Firstly, we introduce several widely used multi-modal datasets
adopted in the experiments briefly, including Corel 5K (Duygulu et al.,
2002), Pascal Sentence (Rashtchian et al., 2010) and NUS-WIDE (Chua
et al., 2009). Each dataset is split to three subsets, namely training set,
validation set and testing set.

Corel 5K dataset contains a total number of 5000 images collected
by Corel company, which covers 50 semantic concepts. Each semantic
concept contains 100 images, the number of tags in the dictionary is
260, and each image has 1-5 tags. Particularly, eight images without
tags are removed by data cleaning, hence, we further divide this dataset
into three parts: 4493 for training, 250 for validation, and 249 for
testing.

Pascal Sentence dataset is made up of 1000 images, which is
ollected from the 2008 pascal development kit. Each image is tagged
y Amazon Mechanical Turk through crowdsourcing to construct five
entences from various annotators, which produce one text. Specifi-
ally, Pascal Sentence is classified into 20 categories with three subsets,
00 for training, 100 for validation, and 100 for testing.
NUS-WIDE dataset consists of 269,648 images that are collected

rom Flickr. Furthermore, this dataset has a total number of 5018
nique tags and 81 semantic concepts. It is worth mentioning that some
oisy tags do not have generalized meanings, which are useless for
ur task and need to be eliminated. Therefore, we choose 560 tags
nd a total of 25,084 image–text pairs from NUS-WIDE to establish
he subdataset NUS-WIDE-25K, in which the training set, validation set
nd testing set contain 20,000, 2500 and 2584 image–text pairs, respec-
ively. Furthermore, six semantic concepts (𝑖.𝑒., ‘‘animal’’, ‘‘clouds’’,

‘‘person’’, ‘‘sky’’, ‘‘water’’ and ‘‘window’’) in NUS-WIDE-25K are re-
served to establish a new subdataset NUS-WIDE-5K, which contains
4996 image–text pairs with three subsets: 4500 pairs for training, 250
pairs for validating, and 246 pairs for testing.

Then, we conduct two cross-modal retrieval tasks: (1) searching
text by image (I→T), (2) searching image by text (T→I) on the above
datasets. The mean Average Precision (mAP), Recall@K, and Precision–
Recall curve (PR curve) are adopted to evaluate the experimental
results of all methods on I→T and T→I.

mAP is used to calculate the mean value of all Average Precision
(AP) of every query, which is defined as:

𝐴𝑃 = 1
𝑅

𝑁
∑

𝑛=1

𝑅𝑛
𝑛

∗ 𝜑(𝑛) (27)

where 𝑁 is the number of samples, 𝑅 is the number of true items in
the retrieval results, and 𝑅𝑛 is the number of true items at the top
of 𝑛 retrieval results. 𝜑(𝑛) is set to 1 if the 𝑛th returned item is true,
otherwise, 𝜑(𝑛) is set to 0. Besides, the average mAP scores (𝑖.𝑒., Avg.)
of I→T and T→I are also reported to show the general performance of
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methods. The higher value of mAP means better performance of the
cross-modal retrieval.

Recall@K is the proportion of relevant items found in the top-K
positions of the ranking list. The greater the value of Recall@K is, the
better performance is.

𝑅𝑒𝑐𝑎𝑙𝑙@𝐾 = 1
𝑁

𝑁
∑

𝑖=1
𝑟𝐾 (28)

The testing set has a total of 𝑁 instances, and 𝑟𝐾 is 1 if the ground-
truth result is in the top-K returned results, else 𝑟𝐾 is 0. We exhibit
the recall rates at top 1 result (R@1), top 5 results (R@5) and top 10
results (R@10). To elaborate the overall performance of Recall@K, we
also provide an additional criterion R@sum by summing R@1, R@5
and R@10 together at both I→T and T→I.

PR curve shows the changing trends of the retrieval precision under
all recall values. The larger the area enclosed by the curve, the better
the performance of the model.

4.2. Implementation details

The source codes of M2HSE will be released at https://github.
com/Boreas-pxl/M2HSE, and we briefly introduce some significant
implementation details, such as data preprocess strategy, experimental
parameter settings, and network training details.

Data preprocess strategy. For each image, the coarse-grained and
fine-grained visual features are extracted from the whole image and its
patches, respectively. Especially, to balance the computation cost and
data capacity of each patch, we uniformly divide each image into 3*3
patches, that is, 𝑛 = 9. Concretely, we exploit the AlexNet (Krizhevsky
et al., 2012), pre-trained on ImageNet, to extract the CNN features for
a fair comparison with most existing works. The dimension of features
extracted from the seventh fully-connected (FC7) layer in AlexNet is
4096, 𝑖.𝑒., 𝑑1 = 4096. Meanwhile, for acquiring the SIFT-BoVW features,
we empirically discover it instructive to set the number of clusters to
500 in 𝐾-means, that is, 𝑑3 = 500.

Experimental parameter settings. Both CNN and SIFT-BoVW fea-
tures are mapped into the 𝑑-dimensional embedding space through
fully-connected layers in two subnetworks, and 𝑑 = 1024. Additionally,
for each text, the dimensionality of the word embeddings is set as 300,
𝑖.𝑒., 𝑑2 = 300. Then, to connect the domains of vision and language, we
use a bi-directional GRU with only one layer, and the dimensionality of
hidden state (𝑖.𝑒., ⃖⃗𝒉𝑗 and ⃖⃖𝒉𝑗 in Eq. (8)) is also set as 1024. The inverse
temperature parameter 𝜆 in softmax function is set as 9 following Lee
et al. (2018). In addition, the sensitivity of hyper-parameters involved
in M2HSE is discussed detailedly in Section 4.5.

Network training details. The proposed M2HSE approach is im-
plemented by Pytorch (Paszke et al., 2017) using an NVIDIA GeForce
RTX 2080 GPU. Both the global-level subnetwork and the local-level
subnetwork are trained 𝐸 epochs in a mini-batch by the Adam opti-
mizer (Kingma & Ba, 2014), and the batch-size is 𝐵. For all models, we
train with a learning rate of 0.0002 for the first 𝐸∕2 epochs, and then
decay the learning rate by 0.1 for the remainder epochs. Specifically,
for Corel 5K and NUS-WIDE-25K, the batch size is set as 100 and we
utilize 100 epochs; for Pascal Sentence, the batch size is 10 and 30
epochs are exploited; as for NUS-WIDE-5K, the batch size is 64 and the
number of epochs is 20. We evaluate the effectiveness of each model on
the validation set at every epoch, and obtain the best model according
to mAP scores. Then, the best model is evaluated on the testing set to
provide experimental results.

4.3. Compared methods

To verify the effectiveness of our proposed M2HSE, we choose
totally 18 state-of-the-art methods for a comprehensive comparison.
There are 7 conventional non-DNN-based methods for cross-modal
11

retrieval, and their introductions are presented as follows:
• CCA (Rasiwasia et al., 2010) is a classic dimensionality reduction
technology, which learns heterogeneous spaces for multi-modal data,
some joint information is reflected by the correlations across two or
more spaces.

• CMCP (Zhai et al., 2012a) simultaneously handles the relevant and
irrelevant correlations between different modalities, meanwhile prop-
agates the correlations between any combinations of heterogeneous
data.

• HSNN (Zhai et al., 2012b) obtains the specific similarity by calculat-
ing the probability of different modalities belonging to the same class.
This probability can be estimated by exploiting the nearest neighbors
of each item.

• JGRHML (Zhai et al., 2013a) is a heterogeneous metric learning
method with a joint graph regularization. This algorithm mines the
complementary information between different modalities.

• JRL (Zhai et al., 2013b) integrates sparse and semi-supervised regu-
larization into a joint optimization framework for multi-modal data. It
also explores the effect of labeled data and unlabeled data of various
modalities.

• JFSSL (Wang et al., 2015) learns the projection matrix for each
modality separately, and uses a graph regularization term to map
data into a common space while maintaining the inter-modality and
intra-modality relationships.

• S2UPG (Peng et al., 2015) uses the joint graph to exploit semantic
correlations between multi-modal data. Meanwhile, it takes fine-
grained data to emphasize the important parts and makes cross-modal
correlations more precise.

Furthermore, the remaining 11 DNN-based compared methods are
briefly introduced as follows:

• DCCA (Andrew et al., 2013) learns sophisticated nonlinear transfor-
mations between two perspectives of data, leading in highly linearly
connected representations.

• CCL (Peng, Qi et al., 2017) designs a hierarchical network to take
advantage of the multi-level implication with joint optimization,
which keeps both the inter-modality and intra-modality correlations.

• SCAN (Lee et al., 2018) regards image–text matching as the central
of cross-modal retrieval task, and it maps words and image regions
into a common embedding space to discover the full latent alignments
between them.

• GXN (Gu et al., 2018) combines two generative models into the
feature embedding for cross-modal retrieval, which learns the high-
level abstract representation and the local grounded representation
for images and texts.

• VSESC (Chen et al., 2019) constructs a visual-based space and a
textual-based space, then incorporates a semantic consistency con-
straint to learn them simultaneously.

• MAVA (Peng et al., 2019) proposes a vision-language dual-attention
mechanism, which discriminates the fine-grained data with various
importance at the relation level and the local level.

• SGRAF (Diao et al., 2021) learns the vector-based similarity represen-
tations and infers relation-aware similarities. Then, it integrates the
global and local similarities by the attention mechanism.

• SCL (Liu et al., 2022) utilizes the unsupervised contrastive learning
to obtain more discriminative features for multi-modal data, and
exploits the correlations among intra- and inter-modality items.

• CGMN (Cheng et al., 2022) explores the intra-relation in images and
sentences with graph convolutional networks, and achieves inter-
relation reasoning between regions and words without affecting the
search efficiency.

• NAAF (Zhang et al., 2022) explicitly uses the positive influence of
matched patches and the negative influence of mismatched patches
to estimate the similarities between images and texts.

• VSRN++ (Li et al., 2022) proposes an image–text embedding learning
framework, in which the visual and textual semantic reasoning mod-
ules are implemented to obtain the global representations for images

and texts.

https://github.com/Boreas-pxl/M2HSE
https://github.com/Boreas-pxl/M2HSE
https://github.com/Boreas-pxl/M2HSE
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Table 1
The mAP scores of cross-modal retrieval for M2HSE and other compared methods on all datasets.

Methods Corel 5K Pascal Sentence NUS-WIDE-25K NUS-WIDE-5K

I→T T→I Avg. I→T T→I Avg. I→T T→I Avg. I→T T→I Avg.

CCA (Rasiwasia et al., 2010) 0.1006 0.1129 0.1068 0.0927 0.0963 0.0945 0.7222 0.6854 0.7038 0.2239 0.2537 0.2388
CMCP (Zhai et al., 2012a) 0.3681 0.3638 0.3660 0.4717 0.4376 0.4546 – – – 0.3951 0.4329 0.4140
HSNN (Zhai et al., 2012b) 0.3708 0.3673 0.3691 0.4136 0.3915 0.4025 – – – 0.4761 0.4818 0.4790
JGRHML (Zhai et al., 2013a) 0.3996 0.4097 0.4047 0.4733 0.4381 0.4557 0.7607 0.7346 0.7476 0.4824 0.4865 0.4845
JRL (Zhai et al., 2013b) 0.4081 0.4197 0.4139 0.5208 0.5067 0.5138 0.7420 0.6973 0.7197 0.4982 0.5330 0.5156
JFSSL (Wang et al., 2015) 0.4141 0.4139 0.4140 0.5073 0.4640 0.4856 0.7092 0.7148 0.7120 0.5224 0.5098 0.5161
S2UPG (Peng et al., 2015) 0.4289 0.4249 0.4269 0.5521 0.5475 0.5498 0.7591 0.6820 0.7205 0.4943 0.4974 0.4959

DCCA (Andrew et al., 2013) 0.3107 0.3064 0.3086 0.4754 0.4719 0.4737 0.7089 0.7103 0.7096 0.4264 0.4330 0.4297
CCL (Peng, Qi et al., 2017) 0.4354 0.4413 0.4384 0.5679 0.5633 0.5656 – – – 0.4329 0.5036 0.4683
SCAN∗ (Lee et al., 2018) 0.4916 0.4886 0.4901 0.5662 0.5709 0.5686 0.7536 0.8014 0.7775 0.5315 0.5302 0.5309
GXN∗ (Gu et al., 2018) 0.5254 0.5186 0.5220 0.5981 0.5785 0.5883 0.8020 0.8019 0.8020 0.5654 0.5572 0.5613
VSESC∗ (Chen et al., 2019) 0.5001 0.4947 0.4974 0.5757 0.5721 0.5739 0.7768 0.7980 0.7874 0.5421 0.5567 0.5494
MAVA∗ (Peng et al., 2019) 0.5217 0.5134 0.5176 0.5723 0.5711 0.5717 0.8012 0.8092 0.8052 0.5977 0.5697 0.5837
SGRAF∗ (Diao et al., 2021) 0.5241 0.5136 0.5189 0.5876 0.5727 0.5802 0.8319 0.8376 0.8348 0.6099 0.6025 0.6063
SCL (Liu et al., 2022) 0.5404 0.5501 0.5453 0.6185 0.6219 0.6202 0.8255 0.8197 0.8226 0.6105 0.6188 0.6147
CGMN (Cheng et al., 2022) 0.5266 0.5231 0.5249 0.6218 0.6059 0.6139 0.8401 0.8264 0.8333 0.6415 0.6301 0.6358
NAAF (Zhang et al., 2022) 0.5493 0.5538 0.5516 0.6156 0.6286 0.6221 0.8468 0.8380 0.8424 0.6252 0.6300 0.6276
VSRN++ (Li et al., 2022) 0.5589 0.5546 0.5568 0.6475 0.6104 0.6290 0.8498 0.8454 0.8476 0.6357 0.6401 0.6379

M2HSE (ours) 0.5715 0.5804 0.5760 0.6429 0.6421 0.6425 0.8600 0.8664 0.8632 0.6550 0.6531 0.6541
Table 2
The Recall@K scores on Corel 5K dataset.

Methods I→T T→I R@sum
R@1 R@5 R@10 R@1 R@5 R@10

CCA (Rasiwasia et al., 2010) 0.158 0.307 0.427 0.251 0.439 0.581 2.163
CMCP (Zhai et al., 2012a) 0.385 0.596 0.694 0.445 0.482 0.707 3.309
HSNN (Zhai et al., 2012b) 0.430 0.587 0.712 0.425 0.531 0.718 3.403
JGRHML (Zhai et al., 2013a) 0.489 0.583 0.746 0.485 0.577 0.733 3.613
JRL (Zhai et al., 2013b) 0.465 0.592 0.681 0.496 0.636 0.758 3.628
JFSSL (Wang et al., 2015) 0.461 0.637 0.759 0.513 0.663 0.774 3.807
S2UPG (Peng et al., 2015) 0.487 0.660 0.777 0.523 0.687 0.782 3.916

DCCA (Andrew et al., 2013) 0.343 0.461 0.644 0.383 0.530 0.704 3.065
CCL (Peng, Qi et al., 2017) 0.545 0.758 0.838 0.495 0.721 0.802 4.159
SCAN∗ (Lee et al., 2018) 0.571 0.689 0.790 0.605 0.762 0.830 4.247
GXN∗ (Gu et al., 2018) 0.664 0.792 0.913 0.702 0.867 0.917 4.855
VSESC∗ (Chen et al., 2019) 0.573 0.730 0.817 0.627 0.808 0.844 4.339
MAVA∗ (Peng et al., 2019) 0.601 0.750 0.820 0.666 0.818 0.882 4.537
SGRAF∗ (Diao et al., 2021) 0.643 0.784 0.808 0.701 0.876 0.918 4.730
SCL (Liu et al., 2022) 0.671 0.804 0.924 0.713 0.860 0.921 4.893
CGMN (Cheng et al., 2022) 0.655 0.806 0.870 0.736 0.874 0.912 4.853
NAAF (Zhang et al., 2022) 0.671 0.811 0.908 0.724 0.870 0.915 4.899
VSRN++ (Li et al., 2022) 0.668 0.808 0.917 0.718 0.881 0.923 4.915

M2HSE (ours) 0.697 0.830 0.940 0.738 0.894 0.958 5.057
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Notably, all compared methods are implemented with the source
odes published by the authors, and the best results of mAP and Re-
all@K are highlighted in bold. As image–text pairs in NUS-WIDE-25K
elong to multiple semantic concepts, CMCP, HSNN and CCL cannot be
arried out on it, we use ‘–’ to represent the unreported experimental
esults. Furthermore, for some DNN-based methods, the symbol ‘∗’ is
sed to indicate the performance of their ensemble models.

.4. Comparison results

The mAP scores of our M2HSE approach with the compared methods
n all datasets are presented in Table 1, which indicates that our
ethod achieves the best overall performance on mAP scores. Specif-

cally, compared with the previous best model VSRN++, the average
mAP scores of M2HSE on Corel 5K, Pascal Sentence, NUS-WIDE-25K,
nd NUS-WIDE-5K, are obviously improved by 1.92%, 1.35%, 1.56%,
nd 1.62%, respectively. Note that VSRN++ only outperforms our
2HSE by 0.46% in I→T retrieval task on Pascal Sentence. However,

ur M2HSE method achieves almost balanced performance in both I→T
nd T→I on all datasets, which means that M2HSE can effectively
12

ridge the ‘‘heterogeneity gap’’ and the ‘‘granularity gap’’, and then d
emonstrates its effectiveness on two different directions of cross-modal
etrieval.

Recall@K is further utilized to verify the performance of cross-
odal retrieval. From Tables 2 to 5, we observe that M2HSE also

chieves the best overall performance on all datasets. Specifically, our
2HSE outperforms the previous best model VSRN++ by a margin of

4.2%, 12.5%, 12.0%, and 13.2% in terms of the overall performance
@sum on Corel 5K, Pascal Sentence, NUS-WIDE-25K, and NUS-WIDE-
K, respectively. Notably, VSRN++ only achieves the highest R@10
core in I→T retrieval task on Pascal Sentence, which outperforms our
2HSE by a small margin of 0.9%. However, these compared methods

annot maintain the continuous effectiveness on all datasets.
Besides, the scores of mAP and Recall@K on NUS-WIDE-25K are

oticeably higher than that on other datasets, because image–text pairs
n NUS-WIDE-25K belong to multiple semantic concepts and thus there
re more chances to hit the true semantic concepts. Moreover, scores of
AP and Recall@K on NUS-WIDE-5K are higher than that on Corel 5K,

ecause (1) the quality of tagged words in NUS-WIDE-5K is significantly
etter than that in Corel 5K, and (2) the number of semantic concepts
n NUS-WIDE-5K is remarkably less than that in Corel 5K. Notably, the
ext modality of Pascal Sentence is a set of sentences, while that of other
atasets is a set of tags. Experimental results of mAP and Recall@K
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Table 3
The Recall@K scores on Pascal Sentence dataset.

Methods I→T T→I R@sum
R@1 R@5 R@10 R@1 R@5 R@10

CCA (Rasiwasia et al., 2010) 0.062 0.244 0.365 0.072 0.193 0.338 1.274
CMCP (Zhai et al., 2012a) 0.421 0.724 0.855 0.401 0.778 0.876 4.055
HSNN (Zhai et al., 2012b) 0.483 0.598 0.764 0.331 0.498 0.801 3.475
JGRHML (Zhai et al., 2013a) 0.381 0.601 0.881 0.419 0.875 0.942 4.099
JRL (Zhai et al., 2013b) 0.541 0.671 0.904 0.603 0.894 0.966 4.579
JFSSL (Wang et al., 2015) 0.425 0.764 0.896 0.552 0.912 0.907 4.456
S2UPG (Peng et al., 2015) 0.521 0.735 0.872 0.697 0.918 0.970 4.713

DCCA (Andrew et al., 2013) 0.407 0.601 0.822 0.584 0.902 0.915 4.231
CCL (Peng, Qi et al., 2017) 0.613 0.862 0.919 0.599 0.854 0.933 4.780
SCAN∗ (Lee et al., 2018) 0.588 0.878 0.900 0.761 0.828 0.882 4.837
GXN∗ (Gu et al., 2018) 0.596 0.875 0.960 0.821 0.884 0.968 5.104
VSESC∗ (Chen et al., 2019) 0.510 0.789 0.921 0.823 0.911 0.964 4.918
MAVA∗ (Peng et al., 2019) 0.561 0.824 0.892 0.685 0.932 0.961 4.855
SGRAF∗ (Diao et al., 2021) 0.631 0.852 0.895 0.757 0.901 0.981 5.017
SCL (Liu et al., 2022) 0.615 0.870 0.928 0.771 0.926 0.980 5.090
CGMN (Cheng et al., 2022) 0.611 0.876 0.951 0.813 0.888 0.974 5.113
NAAF (Zhang et al., 2022) 0.613 0.869 0.932 0.784 0.928 0.981 5.107
VSRN++ (Li et al., 2022) 0.622 0.873 0.966 0.793 0.917 0.969 5.140

M2HSE (ours) 0.664 0.900 0.957 0.826 0.942 0.993 5.265
Table 4
The Recall@K scores on NUS-WIDE-25K dataset.

Methods I→T T→I R@sum
R@1 R@5 R@10 R@1 R@5 R@10

CCA (Rasiwasia et al., 2010) 0.205 0.824 0.931 0.142 0.899 0.942 3.943
CMCP (Zhai et al., 2012a) – – – – – – –
HSNN (Zhai et al., 2012b) – – – – – – –
JGRHML (Zhai et al., 2013a) 0.447 0.816 0.959 0.409 0.840 0.957 4.428
JRL (Zhai et al., 2013b) 0.497 0.814 0.936 0.114 0.829 0.946 4.136
JFSSL (Wang et al., 2015) 0.329 0.815 0.898 0.297 0.816 0.908 4.063
S2UPG (Peng et al., 2015) 0.443 0.868 0.908 0.335 0.819 0.883 4.256

DCCA (Andrew et al., 2013) 0.257 0.897 0.894 0.159 0.891 0.904 4.002
CCL (Peng, Qi et al., 2017) – – – – – – –
SCAN∗ (Lee et al., 2018) 0.849 0.914 0.945 0.784 0.877 0.908 5.277
GXN∗ (Gu et al., 2018) 0.811 0.953 0.968 0.818 0.862 0.893 5.305
VSESC∗ (Chen et al., 2019) 0.852 0.902 0.933 0.793 0.894 0.916 5.290
MAVA∗ (Peng et al., 2019) 0.809 0.944 0.970 0.825 0.865 0.900 5.313
SGRAF∗ (Diao et al., 2021) 0.873 0.956 0.969 0.876 0.928 0.943 5.545
SCL (Liu et al., 2022) 0.884 0.951 0.963 0.869 0.904 0.958 5.529
CGMN (Cheng et al., 2022) 0.893 0.954 0.970 0.873 0.914 0.950 5.554
NAAF (Zhang et al., 2022) 0.906 0.958 0.965 0.917 0.959 0.976 5.681
VSRN++ (Li et al., 2022) 0.905 0.956 0.971 0.909 0.950 0.974 5.675

M2HSE (ours) 0.948 0.976 0.980 0.933 0.972 0.986 5.795
Table 5
The Recall@K scores on NUS-WIDE-5K dataset.

Methods I→T T→I R@sum
R@1 R@5 R@10 R@1 R@5 R@10

CCA (Rasiwasia et al., 2010) 0.246 0.627 0.809 0.242 0.335 0.379 2.638
CMCP (Zhai et al., 2012a) 0.489 0.702 0.827 0.228 0.608 0.897 3.751
HSNN (Zhai et al., 2012b) 0.492 0.657 0.746 0.399 0.784 0.921 3.999
JGRHML (Zhai et al., 2013a) 0.429 0.696 0.809 0.579 0.725 0.901 4.139
JRL (Zhai et al., 2013b) 0.575 0.814 0.872 0.503 0.846 0.914 4.524
JFSSL (Wang et al., 2015) 0.564 0.732 0.896 0.552 0.812 0.927 4.483
S2UPG (Peng et al., 2015) 0.476 0.681 0.752 0.612 0.774 0.909 4.204

DCCA (Andrew et al., 2013) 0.520 0.751 0.921 0.434 0.643 0.910 4.179
CCL (Peng, Qi et al., 2017) 0.492 0.631 0.853 0.308 0.643 0.875 3.802
SCAN∗ (Lee et al., 2018) 0.589 0.716 0.852 0.673 0.867 0.919 4.616
GXN∗ (Gu et al., 2018) 0.612 0.785 0.876 0.645 0.849 0.928 4.695
VSESC∗ (Chen et al., 2019) 0.603 0.789 0.837 0.657 0.841 0.885 4.612
MAVA∗ (Peng et al., 2019) 0.625 0.788 0.908 0.629 0.856 0.935 4.741
SGRAF∗ (Diao et al., 2021) 0.782 0.889 0.923 0.794 0.869 0.915 5.172
SCL (Liu et al., 2022) 0.793 0.876 0.919 0.804 0.880 0.906 5.178
CGMN (Cheng et al., 2022) 0.794 0.885 0.921 0.826 0.871 0.907 5.204
NAAF (Zhang et al., 2022) 0.788 0.873 0.919 0.810 0.862 0.929 5.181
VSRN++ (Li et al., 2022) 0.801 0.883 0.924 0.817 0.869 0.911 5.205

M2HSE (ours) 0.815 0.907 0.940 0.834 0.899 0.942 5.337
13
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Fig. 6. The PR curves of cross-modal retrieval for M2HSE and other compared methods on all datasets.
Table 6
Comparison of the training time with recent state-of-the-art methods on all datasets, and the symbol ‘s’
represents for second.

Methods Corel 5K Pascal Sentence NUS-WIDE-25K NUS-WIDE-5K

DCCA (Andrew et al., 2013) 8764 s 2165 s 14442 s 3296 s
CCL (Peng, Qi et al., 2017) 9957 s 3683 s – 6261 s
SCAN (Lee et al., 2018) 12633 s 3487 s 49750 s 11900 s
GXN (Gu et al., 2018) 28298 s 5314 s 55419 s 17244 s
VSESC (Chen et al., 2019) 23970 s 4716 s 52186 s 14315 s
MAVA (Peng et al., 2019) 20013 s 4341 s 52092 s 12093 s
SGRAF (Diao et al., 2021) 27979 s 5007 s 57435 s 16757 s
SCL (Liu et al., 2022) 25334 s 3851 s 50178 s 12570 s
CGMN (Cheng et al., 2022) 32217 s 6019 s 59048 s 17331 s
NAAF (Zhang et al., 2022) 26839 s 4596 s 58584 s 15553 s
VSRN++ (Li et al., 2022) 34917 s 6558 s 60109 s 18365 s

M2HSE (ours) 29722 s 5818 s 57212 s 14671 s
also demonstrate that M2HSE can obtain better performance whether
sing sentences or tags in cross-modal retrieval. We also find that DNN-
ased methods generally outperform other traditional non-DNN-based
ethods.

Next, the PR curves of both I→T and T→I cross-modal retrieval
tasks on all datasets are shown in Fig. 6, from which we can observe
that M2HSE achieves the best overall performance since the PR curves
generated by M2HSE cover more areas than other methods. It should
be noted that VSRN++ achieves similar performance on PR curve to
M2HSE in Fig. 6(c), while M2HSE outperforms VSRN++ in all other
cases. Just like the experimental results of mAP and Recall@K, the
PR curves of DNN-based methods generally outperform traditional
non-DNN-based methods.

To better evaluate the proposed method, we make comparative
experiments on the training time of DNN-based methods in Table 6.
It is worth mentioning that source codes of all methods run on the
same machine with only one GPU. What we observe from Table 6
can be summarized by the following aspects. Firstly, DCCA, CCL, and
SCAN take the least training time, however, their performance of cross-
modal retrieval is not competitive when compared to other DNN based
methods. Secondly, although the training time of GXN, VSESC, MAVA,
SGRAF, SCL, CGMN, and NAAF is roughly the same as M2HSE, M2HSE
performs significantly better than them on the task of cross-modal
retrieval. Thirdly, VSRN++ is second only to M2HSE on cross-modal
retrieval, but it requires the longest training time.

By carefully analyzing the above experimental results, we gain the
14

following observations:
• We compare seven traditional non-DNN-based methods firstly.
Specifically, S2UPG is superior to other methods in most cases because
S2UPG exploits fine-grained features in the cross-modal similarity
learning, while other methods only use coarse-grained features and
omit complementary fine-grained clues. In addition, as CMCP, HSNN,
JGRHML, JRL and JFSSL make full use of semantic concepts to
enlarge interval distances among different semantic concepts, they
are clearly better than CCA.

• Benefiting from the powerful capability of deep neural networks
in uncovering the nonlinear cross-modal correlations, most DNN-
based methods outperform non-DNN-based methods. For instance,
DCCA achieves significant performance improvement compared with
CCA, due to DCCA maximizes the association between the output
layers of two distinct subnetworks with coarse-grained data. Besides,
benefiting from fusing multi-grained features with a hierarchical
network, CCL outperforms DCCA. Moreover, SCL proposes a self-
supervised correlation learning framework based on the contrastive
learning, which designs a weight-sharing scheme and minimizes the
modality-invariant loss in the common space. SCL significantly out-
performs DCCA and CCL, and even achieves comparable performance
to attention-based methods.

• Attention mechanism based models are significantly superior to DCCA
and CCL, because they can effectively estimate the cross-modal sim-
ilarity by achieving the latent matches between image patches and
words. Concretely, SCAN and VSESC attend to visual regions and
words with each other as the corresponding context to compute
cross-modal similarity. As VSESC incorporates a constraint of the

semantic consistency in the objective function, it outperforms SCAN.
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Fig. 7. mAP scores variation with respect to 𝛾1 and 𝛾2 on all datasets.
Fig. 8. mAP scores variation with respect to 𝛼1 and 𝛼2 when we fix 𝛾1, 𝛾2 on all datasets.
However, both of them only exploit fine-grained relations. MAVA
measures the cross-modal similarity from the instance-level, region-
level, and relation-level, so it achieves better performance than SCAN
and VSESC. Besides, through suppressing the irrelevant interactions at
global and local level, SGRAF significantly outperforms MAVA. Note
that NAAF outperforms the above methods, because it simultaneously
explores the positive influence of matched patches and the negative
influence of mismatched patches to calculate the similarity.

• As a typical cross-modal GAN approach, GXN achieves fairly good
performance because it generates effective feature representations
with two generative modules, which are immensely helpful for match-
ing the right image–text pairs. Additionally, CGMN uses graphs to
represent images and sentences, and then explores the potential
relations between image regions or words by GCN, which outperforms
GXN in most cases. VSRN++ establishes connections between image
patches to obtain features with the semantic association knowledge,
and then it performs global semantic reasoning to select the distinc-
tive information for cross-modal similarity learning. Although it is
second to M2HSE, it needs more training time than our method.

• M2HSE achieves the best overall performance on all datasets. The
reasons lie in that M2HSE can mine and fuse the complementarity in
multi-modal and multi-grained data to bridge the ‘‘heterogeneity gap’’
and the ‘‘granularity gap’’. Concretely, M2HSE accurately describes
the complex and nonlinear cross-modal relationships, which is a dis-
tinct advantage compared with non-DNN-based methods. As M2HSE
exploits both coarse-grained and fine-grained relations, it also easily
outperforms SCAN, VSESC, GXN, SCL, CGMN, and NAAF. Although
MAVA and SGRAF fully utilize both coarse-grained and fine-grained
data, M2HSE still performs better than them due to the fact that:
(1) M2HSE discovers lots of latent cross-modal correlations in the
auxiliary modality to calculate the cross-modal similarity more com-
prehensively. (2) M2HSE adopts the proposed multi-spring balance
loss to optimize the cross-modal similarity more accurately through
selecting important samples and further assigning suitable weights in
a unified framework.

4.5. Parameter sensitivity and convergence analysis

There are several hyper-parameters involved in M2HSE, 𝑖.𝑒., (𝛾1, 𝛾2)
in MSB loss, (𝛼 , 𝛼 ) in  𝐺, (𝛽 , 𝛽 ) in  𝐿, and (𝜃 , 𝜃 ) for fusing
15

1 2 1 2 1 2
the global-level and local-level primary similarity matrices. They are
selected on the validation set through the grid-search method with
pre-defined range of values, and the optimal combination of each set
of parameters is marked with a red five-pointed star in the figure.
All experiments related to parameter sensitivity analysis are conducted
using the averaging mAP scores on both I→T and T→I.

Firstly, we set the value of 𝛾1 and 𝛾2 in the range of {0.01, 0.1, 1,
10, 100} and {0.25, 0.5, 0.75, 1}, respectively, and conduct parameter
analysis with the M2HSE-GP (refers to Table 7) on all datasets in Fig. 7.
Generally speaking, for all datasets, better performance can be achieved
when 𝛾1 is equal to 1 or 10, and the proposed method is not much
sensitive to 𝛾2. Especially, the best parameter settings of (𝛾1, 𝛾2) for
Corel 5K, Pascal Sentence, NUS-WIDE-25K and NUS-WIDE-5K are set
to (1, 0.5), (10, 0.5), (10, 0.25), and (10, 0.25), respectively.

Secondly, we fix 𝛾1 and 𝛾2 as their optimal values for each dataset,
then report the mAP scores with 𝛼1 and 𝛼2 varying in the global-level
subnetwork (shown in Fig. 8), and with 𝛽1 and 𝛽2 varying in the local-
level subnetwork (shown in Fig. 9). Particularly, 𝛼1, 𝛼2, 𝛽1, 𝛽2 are
all ranged in {0.2, 0.4, 0.6, 0.8, 1}. In Fig. 8, we can see that (1) if the
values of 𝛼1 and 𝛼2 are too small, the auxiliary modality cannot provide
enough complementary semantic information, which exerts a negative
influence on the performance of cross-modal retrieval, (2) if the values
of 𝛼1 and 𝛼2 are too large, the primary modality cannot play a critical
role in cross-modal retrieval, and thus obtain lower mAP scores. Hence,
the best values of (𝛼1, 𝛼2) for Corel 5K, Pascal Sentence, NUS-WIDE-25K
and NUS-WIDE-5K are set to (0.8, 0.8), (0.6, 0.6), (0.6, 0.6), and (0.6,
0.6), respectively. Similarly, experimental results in Fig. 9 demonstrate
that too small or too large values of 𝛽1 and 𝛽2 may decrease mAP scores
as well. Furthermore, the best parameters setting of (𝛽1, 𝛽2) should be
(0.4, 0.4) for all datasets. Note that M2HSE is not much sensitive to 𝛼1,
𝛼2, 𝛽1, 𝛽2 on NUS-WIDE-25K, due to the fact that each image–text pair
of this dataset belongs to multiple semantic concepts and thus there are
more chances to hit the ground-truth.

Thirdly, we tune 𝜃1 and 𝜃2 in the range of {0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9, 1}, and experimental results are shown in Fig. 10. Specif-
ically, the best parameter settings of (𝜃1, 𝜃2) for Corel 5K, Pascal
Sentence, NUS-WIDE-25K and NUS-WIDE-5K are set to (0.8, 1), (0.5,
0.9), (0.1, 1), and (0.8, 0.8), respectively. It can be observed that for
Corel 5K, Pascal Sentence and NUS-WIDE-5K, mAP scores drop if 𝜃
1
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Fig. 9. mAP scores variation with respect to 𝛽1 and 𝛽2 when we fix 𝛾1, 𝛾2 on all datasets.
Fig. 10. mAP scores variation with respect to 𝜃1 and 𝜃2 when we fix 𝛾1, 𝛾2, 𝛼1, 𝛼2, 𝛽1, 𝛽2 on all datasets.
Fig. 11. Convergence curves of the objective function  𝐺 with four algorithms on all datasets.
and 𝜃2 are quite different, which means that coarse and fine granularity
have almost the same amount of semantic information and they can
well complement each other. Besides, M2HSE is less sensitive to 𝜃1 and
𝜃2 on NUS-WIDE-25K.

Finally, as shown in Fig. 11, we conduct the convergence analysis
with the global-level subnetwork on all datasets. As the size of the
training set of these datasets is different, the number of their iterations
are not fixed. For instance, the iteration number for NUS-WIDE-25K
is significantly higher than that for other datasets, because its scale
is much larger than theirs. Particularly, the convergence pattern of
the local-level subnetwork is quite similar to that of the global-level
subnetwork. For simplicity, we do not report the convergence curves of
 𝐿. In order to fully demonstrate the effectiveness of our proposed MSB
loss, we compare it with Triplet loss (TRI Frome et al., 2013), Universal
Weighting Framework (UWF Wei, Yang et al., 2021) and Meta Self-
Paced Network (MSPN Wei, Xu et al., 2021). Notably, TRI, UWF, and
MSPN are used to substitute for MSB in  𝐺.

Specifically, the training samples are selected randomly and consid-
ered equally in TRI, which leads a slow convergence in the training
stage. Compared with TRI, we can observe that the convergence speed
of  𝐺 is greatly improved on each dataset by adopting our proposed
MSB loss, which can accelerate convergence and improve performance
through effectively mining informative samples for discriminative op-
timization. Additionally, UWF and MSPN also notice the problem of
samples selecting and weights assigning in cross-modal scenario, hence,
UWF and MSPN converge faster than TRI.

To further prove the effectiveness and advantages of our strategy,
the MSB loss is compared with UWF and MSPN. Concretely,  𝐺 con-
verges faster with MSB instead of UWF on all datasets. The convergence
16
Table 7
Experimental configurations of different models in ablation study 1.

Models Subnetwork Modality

GLO LOC PRI AUX

M2HSE-GP
√ √

M2HSE-GPA
√ √ √

M2HSE-LP
√ √

M2HSE-LPA
√ √ √

M2HSE-GLP
√ √ √

M2HSE
√ √ √ √

speed is further improved with MSPN, and even faster on Pascal Sen-
tence than using MSB. In addition to compare the convergence speed
of the above algorithms, we also set up a series of ablation models
with them to show their performance on cross-modal retrieval. Note
that the detailed experimental results and analysis are discussed in
Section 4.6.2.

4.6. Ablation studies

In this section, to investigate the contribution of each key compo-
nent in M2HSE, a series of ablation experiments are carried out under
different configurations.

4.6.1. Ablation study 1
As shown in Table 7, we select four components, GLO, LOC, PRI

and AUX, to construct some ablation models in ablation study 1.
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Table 8
Experimental results of ablation study 1 on all datasets with mAP scores.

Model Corel 5K Pascal Sentence NUS-WIDE-25K NUS-WIDE-5K

I→T T→I Avg. I→T T→I Avg. I→T T→I Avg. I→T T→I Avg.

M2HSE-GP 0.4859 0.5048 0.4953 0.5008 0.4967 0.4988 0.7501 0.7617 0.7559 0.5635 0.5700 0.5668
M2HSE-GPA 0.4983 0.5180 0.5082 0.5342 0.5216 0.5279 0.7650 0.7933 0.7792 0.5887 0.5952 0.5919

M2HSE-LP 0.5091 0.5167 0.5109 0.5953 0.5788 0.5871 0.8163 0.8082 0.8123 0.6013 0.5901 0.5957
M2HSE-LPA 0.5268 0.5235 0.5252 0.6210 0.6065 0.6138 0.8388 0.8274 0.8331 0.6416 0.6289 0.6353

M2HSE-GLP 0.5403 0.5497 0.5450 0.6186 0.6217 0.6201 0.8247 0.8193 0.8220 0.6108 0.6197 0.6153
M2HSE 0.5715 0.5804 0.5760 0.6429 0.6421 0.6425 0.8600 0.8664 0.8632 0.6550 0.6531 0.6541
Table 9
Experimental configurations of different models in ablation study 2.

Model
Subnetwork Loss function

GLO LOC MSB TRI UWF MSPN
Step1 Step2

M2HSE-GPA-TRI
√ √

M2HSE-GPA-UWF
√ √

M2HSE-GPA-MSPN
√ √

M2HSE-GPA-MSB(Step1)
√ √

M2HSE-GPA-MSB(Step2)
√ √

M2HSE-GPA
√ √ √

M2HSE-LPA-TRI
√ √

M2HSE-LPA-UWF
√ √

M2HSE-LPA-MSPN
√ √

M2HSE-LPA-MSB(Step1)
√ √

M2HSE-GPA-MSB(Step2)
√ √

M2HSE-LPA
√ √ √

M2HSE-TRI
√ √ √

M2HSE-UWF
√ √ √

M2HSE-MSPN
√ √ √

M2HSE-MSB(Step1)
√ √ √

M2HSE-MSB(Step2)
√ √ √

M2HSE
√ √ √ √
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Specifically, GLO and LOC represent the global-level and local-level
subnetwork, respectively, PRI and AUX denote the primary and aux-
iliary modality, respectively. There are six combinations of the above
four components, for example, M2HSE-GPA represents the model with
only the global-level subnetwork and using both primary and auxiliary
modalities. The experimental results are shown in Table 8, in which all
ablation models are implemented with the proposed MSB loss. Some
important observations are listed as follows.

• Compared with M2HSE-GP and M2HSE-LP, M2HSE-GPA and M2HSE-
LPA perform better on all datasets, which proves that the auxiliary
modality plays an important role in cross-modal similarity learn-
ing in each subnetwork. To further verify the contribution of the
auxiliary modality, we compare the performance of two ensemble
models. Compared with M2HSE-GLP on four datasets, M2HSE gains
the improvements of 3.10%, 2.24%, 4.12%, and 3.88% with ‘‘Avg.’’,
respectively.
It is apparent that M2HSE-GLP outperforms both M2HSE-GP and
M2HSE-LP, M2HSE outperforms M2HSE-GPA and M2HSE-LPA, which
proves that the performance of cross-modal retrieval can be signif-
icantly improved by integrating two subnetworks, which are con-
structed with the coarse-grained and the fine-grained data, respec-
tively. Besides, M2HSE-LP outperforms M2HSE-GP, M2HSE-LPA out-
performs M2HSE-GPA, due to the fact that the local-level subnet-
work captures more fine-grained details and more valuable semantic
information with the attention mechanism.

• Integrated with all components, M2HSE always achieves the greatest
results on all datasets. In summary, it can be concluded that: (1)
each component in M2HSE plays a very positive role for semantic
enhancement in cross-modal similarity learning, (2) the auxiliary
modality contains valuable complementary semantic information that
does not exist in the primary modality, (3) data with different granu-
17

larities emphasizes distinct and complementary views in cross-modal
correlation learning, (4) M2HSE achieves the best performance by
effectively mining and fusing the complementarity in multi-modal
and multi-grained data to bridge the ‘‘heterogeneity gap’’ and the
‘‘granularity gap’’.

.6.2. Ablation study 2
As illustrated in Table 9, we provide some ablation models to

eveal the effectiveness of each step of MSB loss with GLO and LOC
omponents in ablation study 2. Concretely, MSB(Step1) denotes that
epresentative samples are selected through step 1, while they share the
ame weights, that is, all elastic coefficients are set to one in step 2. On
he contrary, MSB(Step2) represents that all samples are discriminated
ia step 2, however, the process of representative samples selecting is
mitted.

Moreover, TRI, UWF and MSPN are used to substitute for MSB in
he ablation models to compare their effects on cross-modal retrieval
erformance. Notably, UWF and MSPN also consider the issue of select-
ng the most representative samples and assigning appropriate weights
o optimize the cross-modal similarity. The experimental results are
hown in Table 10, and more detailed analysis are presented as follows.

The performance of MSB(Step1) and MSB(Step2) are very close to
each other, whether in two subnetworks or the ensemble models,
which shows that these two steps play almost the same role in cross-
modal similarity optimization. Besides, MSB(Step1) and MSB(Step2)
significantly outperform than triplet loss, because there are two main
defects in triplet loss: (1) training samples are randomly selected,
thus, some good enough samples may interfere with the optimiza-
tion of network parameters, resulting in the degradation of per-
formance. (2) positive and negative samples are separated with a
pre-defined margin, which cannot be accurately optimized according

to their importance. But the above two defects are well handled
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Table 10
Experimental results of ablation study 2 on all datasets with mAP scores.

Model Corel 5K Pascal Sentence NUS-WIDE-25K NUS-WIDE-5K

I→T T→I Avg. I→T T→I Avg. I→T T→I Avg. I→T T→I Avg.

M2HSE-GPA-TRI 0.4556 0.4601 0.4579 0.4763 0.4685 0.4724 0.7127 0.7382 0.7255 0.5406 0.5429 0.5418
M2HSE-GPA-UWF 0.4864 0.4903 0.4884 0.5242 0.5235 0.5239 0.7320 0.7533 0.7427 0.5615 0.5623 0.5619
M2HSE-GPA-MSPN 0.5003 0.5025 0.5014 0.5411 0.5375 0.5393 0.7501 0.7623 0.7562 0.5600 0.5644 0.5622
M2HSE-GPA-MSB(Step1) 0.4709 0.4732 0.4721 0.5015 0.4917 0.4966 0.7349 0.7358 0.7354 0.5605 0.5634 0.5620
M2HSE-GPA-MSB(Step2) 0.4747 0.4844 0.4796 0.4924 0.4935 0.4930 0.7402 0.7411 0.7407 0.5555 0.5629 0.5592
M2HSE-GPA 0.4983 0.5180 0.5082 0.5342 0.5216 0.5279 0.7650 0.7933 0.7792 0.5887 0.5952 0.5919

M2HSE-LPA-TRI 0.4644 0.4614 0.4629 0.5669 0.5446 0.5558 0.7821 0.7679 0.7750 0.5872 0.5596 0.5734
M2HSE-LPA-UWF 0.5192 0.5187 0.5190 0.5883 0.5794 0.5839 0.7986 0.8035 0.8011 0.6094 0.6028 0.6061
M2HSE-LPA-MSPN 0.5111 0.5203 0.5157 0.6169 0.6146 0.6158 0.8208 0.8193 0.8201 0.6106 0.6010 0.6058
M2HSE-LPA-MSB(Step1) 0.4900 0.4874 0.4887 0.5598 0.5636 0.5617 0.8112 0.7947 0.8030 0.6213 0.5995 0.6104
M2HSE-LPA-MSB(Step2) 0.4823 0.4851 0.4837 0.5714 0.5603 0.5659 0.8117 0.8058 0.8088 0.6126 0.6048 0.6087
M2HSE-LPA 0.5268 0.5235 0.5252 0.6210 0.6065 0.6138 0.8388 0.8274 0.8331 0.6416 0.6289 0.6353

M2HSE-TRI 0.4910 0.5020 0.4965 0.5738 0.5523 0.5631 0.7957 0.7742 0.7850 0.5911 0.5600 0.5756
M2HSE-UWF 0.5643 0.5661 0.5652 0.6345 0.6278 0.6312 0.8364 0.8357 0.8361 0.6416 0.6329 0.6373
M2HSE-MSPN 0.5667 0.5784 0.5726 0.6442 0.6501 0.6472 0.8472 0.8480 0.8476 0.6436 0.6439 0.6438
M2HSE-MSB(Step1) 0.5328 0.5415 0.5372 0.5972 0.6014 0.5993 0.8332 0.8245 0.8289 0.6266 0.6146 0.6256
M2HSE-MSB(Step2) 0.5243 0.5421 0.5332 0.6057 0.6012 0.6032 0.8217 0.8202 0.8210 0.6355 0.6292 0.6324
M2HSE 0.5715 0.5804 0.5760 0.6429 0.6421 0.6425 0.8600 0.8664 0.8632 0.6550 0.6531 0.6541
Fig. 12. The mAP scores of I→T and T→I on each semantic concept in Pascal Sentence dataset by M2HSE as well as comparison methods VSRN++ and NAAF. Note that the red
horizontal dotted lines indicate the mAP scores obtained by our M2HSE method.
by step 1 and step 2 of our proposed MSB loss. We can observe
that M2HSE-MSB(Step1) and M2HSE-MSB(Step2) achieve an average
improvement of 4.27% and 4.24% on all datasets than M2HSE-TRI,
respectively.

• Integrated with step 1 and step 2 together, MSB loss achieves better
performance than only using either of them alone, whether in two
subnetworks or the ensemble models. For example, compared with
M2HSE-MSB(Step1) on four datasets, M2HSE gets a promotion of
3.88%, 4.32%, 3.43%, and 2.85% with ‘‘Avg.’’, respectively. For
MSB(Step1), the selected samples do not be further discriminated,
therefore, important samples have not received adequate attention,
which exerts a negative influence on the cross-modal similarity opti-
mization. For MSB(Step2), it is not the best strategy to discriminate
all training samples in a mini-batch to optimize the cross-modal sim-
ilarity, because some samples have already been close to the optimal
states, and they may bring negative impacts on weight assigning.

• Compared with two related works, we observe that all ablation mod-
els integrated with MSB loss significantly outperform UWF, mainly
because polynomial functions used in UWF require more hyper-
parameters than MSB loss. It is easy to understand that the more
hyper-parameters that a metric learning framework contains, the
more difficult it is to achieve an optimal solution. In general, MSPN
is only inferior to MSB loss, and it even performs the best on Pas-
cal Sentence. However, MSPN relies on a fully connected neural
network to fit the weight function, which is complex and weakly
interpretable. On the contrary, MSB loss makes better use of potential
interactions among the samples based on the multi-spring balance
system to automatically learn weights and further adaptively optimize
18
the cross-modal similarity. Hence, MSB loss has low computational
complexity and strong interpretability.

• Besides, the local-level subnetwork always outperforms the global-
level subnetwork no matter what types of loss functions are used.
However, the former cannot substitute for the latter in the task of
cross-modal retrieval, due to the fact that they are complementary to
each other. In general, by integrating these two subnetworks, M2HSE
achieves a better performance than any single one subnetwork.

4.7. Qualitative results and analysis

Firstly, taking Pascal Sentence dataset as an example, the mAP
scores of I→T and T→I on each semantic concept by our M2HSE and
two most recent DNN-based solutions VSRN++, NAAF are reported in
Fig. 12. On the one hand, these three methods have different perfor-
mance on I→T and T→I. Specifically, M2HSE and VSRN++ outperform
NAAF on most semantic concepts. Note that the performance of M2HSE
is not the best on all semantic concepts. On the other hand, the
mAP scores of M2HSE on all semantic concept vary widely. Moreover,
VSRN++ and NAAF also exhibit similar patterns. That is to say, the
intrinsic properties of the dataset have an impact on the performance
of cross-modal retrieval. For instance, all these three methods achieve
higher mAP scores on ‘‘motorbike’’, ‘‘horse’’, ‘‘airplane’’, ‘‘bird’’, ‘‘sofa’’,
‘‘bicycle’’, etc, while they achieve lower mAP scores on ‘‘chair’’, ‘‘boat’’,
‘‘cow’’, ‘‘dog’’, ‘‘person’’, etc.

Then, as described in Fig. 13, in order to explore the disparity of
mAP scores on different semantic concepts, we provide several typical
examples of cross-modal retrieval by M2HSE, VSRN++ and NAAF with
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Fig. 13. Examples of the I→T and T→I retrieval results on Pascal Sentence dataset by M2HSE as well as compared methods VSRN++ and NAAF. The ground-truth semantic
concept of each query is presented for instruction. Besides, the true matches are marked in green rectangles with check marks, while the incorrect retrieval results are indicated
by red rectangles and cross marks.
the Pascal Sentence dataset, and display the top five results of I→T and
T→I corresponding to a specific query. Notably, for each cross-modal
retrieval task, we select four queries that belong to different semantic
concepts. Particularly, higher mAP scores are achieved on the first two
queries, while lower mAP scores are acquired on the latter two.

Specifically, on I→T, VSRN++ shows better overall performance,
and the results returned by the first two queries are all correct. How-
ever, all methods make more mistakes under the queries of ‘‘boat’’
and ‘‘chair’’. The reason is that the images about ‘‘boat’’ and ‘‘chair’’
contain many objects, which may be occluded by other salient ob-
jects. Therefore, the returned wrong results are mostly influenced by
these category-irrelevant and semantic-relevant objects, such as ‘‘cat’’
and ‘‘pottedplant’’ in the fourth image. Besides, on T→I, the images
searched by M2HSE under four queries contain less wrong results than
VSRN++ and NAAF, while it also makes more mistakes in the latter two
queries (𝑖.𝑒., ‘‘dog’’ and ‘‘person’’). It can be observed that the query
texts about ‘‘dog’’ and ‘‘person’’ contain rich semantic information,
which leads M2HSE to make mistakes in the task of semantic category
recognition. In conclusion, M2HSE has some limitations when dealing
with the images and texts containing complex scenes, but it still exhibits
better overall performance than VSRN++ and NAAF.

5. Conclusion

In this paper, we propose a multi-modal and multi-grained hierar-
chical semantic enhancement network to handle the task of cross-modal
retrieval. To bridge the ‘‘heterogeneity gap’’ and the ‘‘granularity gap’’,
M2HSE follows the key idea ‘‘complementarity is the king’’, which
well conforms to the intrinsic rules of the sophisticated and disor-
dered distributions of semantic information. Specifically, M2HSE aims
to gather and fuse all semantic pieces scattered over various modali-
ties and various granularities through two stages. The initial primary
and auxiliary cross-modal similarity are calculated with coarse-grained
and fine-grained data in the first stage, and all types of cross-modal
similarities are optimized by the MSB loss in the second stage.
19
Experimental results demonstrate the superiority of our proposed
M2HSE compared with 18 state-of-the-art methods on several widely-
used cross-modal datasets, and ablation studies further verify the ef-
fectiveness of each component in M2HSE. Concretely, compared with
the previous best model VSRN++, the average mAP scores of M2HSE
on Corel 5K, Pascal Sentence, NUS-WIDE-25K, and NUS-WIDE-5K, are
obviously improved by 1.92%, 1.35%, 1.56%, and 1.62%, respectively.
Besides, our M2HSE outperforms VSRN++ by a margin of 14.2%,
12.5%, 12.0%, and 13.2% in terms of the overall performance R@sum
on these datasets, respectively.

Note that we also find some limitations of our method through ex-
periments, for instance, as M2HSE does not perform well with complex
multi-modal scenarios, and the training time of M2HSE is not very
competitive. Therefore, the future works mainly lie in four aspects.
Firstly, we will try to extend two levels of granularity to multiple levels,
and further deeply mine the complementarity among them. Secondly,
as a kind of important semantic information, the positional relations
among fine-grained patches of each modality will be considered in
cross-modal similarity learning. Thirdly, we will attempt to accelerate
the training process of M2HSE through improving its architecture.
Fourthly, we will verify the scalability of M2HSE, that is, other types of
modality will be used to perform the cross-modal retrieval, for example,
video queries text.
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Appendix A

Here we present the details of the derivation process of the proposed
MSB loss. The gradient of (𝑴 ,𝜣) with respect to each cross-modal
similarity score 𝑴 𝑖𝑗 is defined in Eq. (26), which is designed based on
the multi-spring balance system for positive samples or negative sam-
ples. Eq. (26) can be transformed to the following equation according
to Eqs. (20)–(23):
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𝐾𝑖𝑗
∑

�̃�𝑖𝑘=−1 𝐾𝑖𝑘
=

𝐺(�̃�𝑖𝑗 ,𝑀𝑖𝑗 )
∑

�̃�𝑖𝑘=−1 𝐺(�̃�𝑖𝑘,𝑀𝑖𝑘)

=
𝑒𝑥𝑝(�̃�𝑖𝑗 (𝛾2 − 𝛾1𝑀𝑖𝑗 ))

∑

�̃�𝑖𝑘=−1 𝑒𝑥𝑝(�̃�𝑖𝑘(𝛾2 − 𝛾1𝑀𝑖𝑘))
if �̃�𝑖𝑗 = −1.

(29)

Thus, we have:

𝜕(𝑴 ,𝜣)
𝜕𝑀𝑖𝑗

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−
𝑒𝑥𝑝(𝛾2 − 𝛾1𝑀𝑖𝑗 )

∑

�̃�𝑖𝑘=+1 𝑒𝑥𝑝(𝛾2 − 𝛾1𝑀𝑖𝑘)
if �̃�𝑖𝑗 = +1,

𝑒𝑥𝑝(−𝛾2 + 𝛾1𝑀𝑖𝑗 )
∑

�̃�𝑖𝑘=−1 𝑒𝑥𝑝(−𝛾2 + 𝛾1𝑀𝑖𝑘)
if �̃�𝑖𝑗 = −1.

(30)

hen, we obtain the primitive integral (𝑖.𝑒. (𝑴 ,𝜣)) of Eq. (30)
according to the calculus theory:

(𝑴 ,𝜣) = ∫
𝜕(𝑴 ,𝜣)

𝜕𝑀𝑖𝑗
𝑑𝑀𝑖𝑗

= ∫

(

−
𝑒𝑥𝑝(𝛾2 − 𝛾1𝑀𝑖𝑗 )

∑

�̃�𝑖𝑘=+1 𝑒𝑥𝑝(𝛾2 − 𝛾1𝑀𝑖𝑘)

+
𝑒𝑥𝑝(−𝛾2 + 𝛾1𝑀𝑖𝑗 )

∑

�̃�𝑖𝑘=−1 𝑒𝑥𝑝(−𝛾2 + 𝛾1𝑀𝑖𝑘)

)

𝑑𝑀𝑖𝑗

(31)

Note that 𝑴 is a matrix of size 𝐵 ∗ 𝐵, where 𝐵 is the mini-batch
ize in training, so we can infer that:

(𝑴 ,𝜣) =
𝐵
∑

𝑖=1

⎧

⎪

⎨

⎪

⎩

1
𝛾1

ln
⎡

⎢

⎢

⎣

∑

�̃�𝑖𝑘=+1

𝑒𝑥𝑝(𝛾2 − 𝛾1𝑀𝑖𝑘)
⎤

⎥

⎥

⎦

+ 1
𝛾1

ln
⎡

⎢

⎢

⎣

∑

�̃�𝑖𝑘=−1

𝑒𝑥𝑝(−𝛾2 + 𝛾1𝑀𝑖𝑘)
⎤

⎥

⎥

⎦

⎫

⎪

⎬

⎪

20

⎭

= 1
𝛾1

𝐵
∑

𝑖=1

⎧

⎪

⎨

⎪

⎩

ln
⎡

⎢

⎢

⎣

∑

�̃�𝑖𝑘=+1

𝑒𝑥𝑝(𝛾2 − 𝛾1𝑀𝑖𝑘)
⎤

⎥

⎥

⎦

+ ln
⎡

⎢

⎢

⎣

∑

�̃�𝑖𝑘=−1

𝑒𝑥𝑝(−𝛾2 + 𝛾1𝑀𝑖𝑘)
⎤

⎥

⎥

⎦

⎫

⎪

⎬

⎪

⎭

(32)

According to Eqs. (20) and (21), the exponential terms in Eq. (32)
refer to the elastic coefficients in the multi-spring balance systems, then
Eq. (32) can be rewritten as follows:

(𝑴 ,𝜣) = 1
𝛾1

𝐵
∑

𝑖=1

⎧

⎪

⎨

⎪

⎩

ln
⎡

⎢

⎢

⎣

∑

�̃�𝑖𝑘=+1

𝐾𝑖𝑘

⎤

⎥

⎥

⎦

+ ln
⎡

⎢

⎢

⎣

∑

�̃�𝑖𝑘=−1

𝐾𝑖𝑘

⎤

⎥

⎥

⎦

⎫

⎪

⎬

⎪

⎭

(33)

inally, a fraction term is added for normalization:

(𝑴 ,𝜣) = 1
𝛾1

1
𝐵

𝐵
∑

𝑖=1

⎧

⎪

⎨

⎪

⎩

ln
⎡

⎢

⎢

⎣

∑

�̃�𝑖𝑘=+1

𝐾𝑖𝑘

⎤

⎥

⎥

⎦

+ ln
⎡

⎢

⎢

⎣

∑

�̃�𝑖𝑘=−1

𝐾𝑖𝑘

⎤

⎥

⎥

⎦

⎫

⎪

⎬

⎪

⎭

(34)

References

Andrew, G., Arora, R., Bilmes, J., & Livescu, K. (2013). Deep canonical correlation
analysis. In International conference on machine learning (pp. 1247–1255). https:
//dl.acm.org/doi/10.5555/3042817.3043076.

Baltrušaitis, T., Ahuja, C., & Morency, L. -P. (2018). Multimodal machine learning: A
survey and taxonomy. IEEE Transactions on Pattern Analysis and Machine Intelligence,
41, 423–443. http://dx.doi.org/10.1109/tpami.2018.2798607.

Chen, T., Deng, J., & Luo, J. (2020). Adaptive offline quintuplet loss for image-
text matching. In European conference on computer vision (pp. 549–565). Springer,
http://dx.doi.org/10.1007/978-3-030-58601-0_33.

Chen, H., Ding, G., Lin, Z., Zhao, S., & Han, J. (2019). Cross-modal image-text retrieval
with semantic consistency. In Proceedings of the 27th ACM international conference
on multimedia (pp. 1749–1757). http://dx.doi.org/10.1145/3343031.3351055.

Cheng, Y., Zhu, X., Qian, J., Wen, F., & Liu, P. (2022). Cross-modal graph matching
network for image-text retrieval. ACM Transactions on Multimedia Computing,
Communications, and Applications (TOMM), 18, 1–23. http://dx.doi.org/10.1145/
3499027.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H.,
& Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder
for statistical machine translation. http://dx.doi.org/10.3115/v1/d14-1179, arXiv
preprint.

Chua, T. -S., Tang, J., Hong, R., Li, H., Luo, Z., & Zheng, Y. (2009). Nus-wide: A real-
world web image database from national university of Singapore. In Proceedings
of the ACM international conference on image and video retrieval (pp. 1–9). http:
//dx.doi.org/10.1145/1646396.1646452.

Csurka, G., Dance, C., Fan, L., Willamowski, J., & Bray, C. (2004). Visual categorization
with bags of keypoints. In Workshop on statistical learning in computer vision: Vol. 1,
(pp. 1–2). Prague.

Deng, J., Dong, W., Socher, R., Li, L. -J., Li, K., & Fei-Fei, L. (2009). Imagenet: A
large-scale hierarchical image database. In 2009 IEEE conference on computer vision
and pattern recognition (pp. 248–255). IEEE, http://dx.doi.org/10.1109/cvpr.2009.
5206848.

Devlin, J., Chang, M. -W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:
1810.04805.

Diao, H., Zhang, Y., Ma, L., & Lu, H. (2021). Similarity reasoning and filtration for
image-text matching. In Proceedings of the AAAI conference on artificial intelligence:
Vol. 35, (pp. 1218–1226). http://dx.doi.org/10.1609/aaai.v35i2.16209.

Duygulu, P., Barnard, K., de Freitas, J. F. G., & Forsyth, D. A. (2002). Object recognition
as machine translation: Learning a lexicon for a fixed image vocabulary. In European
conference on computer vision (pp. 97–112). Springer, http://dx.doi.org/10.1007/3-
540-47979-1_7.

Faghri, F., Fleet, D. J., Kiros, J. R., & Fidler, S. (2017). Vse++: Improving
visual-semantic embeddings with hard negatives. arXiv preprint arXiv:1707.05612.

Frome, A., Corrado, G. S., Shlens, J., Bengio, S., Dean, J., Ranzato, M., & Mikolov, T.
(2013). Devise: A deep visual-semantic embedding model. Advances in Neural
Information Processing Systems, 26.

Ge, W. (2018). Deep metric learning with hierarchical triplet loss. In Proceedings of the
European conference on computer vision (pp. 269–285). http://dx.doi.org/10.1007/

978-3-030-01231-1_17.

https://dl.acm.org/doi/10.5555/3042817.3043076
https://dl.acm.org/doi/10.5555/3042817.3043076
https://dl.acm.org/doi/10.5555/3042817.3043076
http://dx.doi.org/10.1109/tpami.2018.2798607
http://dx.doi.org/10.1007/978-3-030-58601-0_33
http://dx.doi.org/10.1145/3343031.3351055
http://dx.doi.org/10.1145/3499027
http://dx.doi.org/10.1145/3499027
http://dx.doi.org/10.1145/3499027
http://dx.doi.org/10.3115/v1/d14-1179
http://dx.doi.org/10.1145/1646396.1646452
http://dx.doi.org/10.1145/1646396.1646452
http://dx.doi.org/10.1145/1646396.1646452
http://refhub.elsevier.com/S0957-4174(22)02434-4/sb8
http://refhub.elsevier.com/S0957-4174(22)02434-4/sb8
http://refhub.elsevier.com/S0957-4174(22)02434-4/sb8
http://refhub.elsevier.com/S0957-4174(22)02434-4/sb8
http://refhub.elsevier.com/S0957-4174(22)02434-4/sb8
http://dx.doi.org/10.1109/cvpr.2009.5206848
http://dx.doi.org/10.1109/cvpr.2009.5206848
http://dx.doi.org/10.1109/cvpr.2009.5206848
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://dx.doi.org/10.1609/aaai.v35i2.16209
http://dx.doi.org/10.1007/3-540-47979-1_7
http://dx.doi.org/10.1007/3-540-47979-1_7
http://dx.doi.org/10.1007/3-540-47979-1_7
http://arxiv.org/abs/1707.05612
http://refhub.elsevier.com/S0957-4174(22)02434-4/sb14
http://refhub.elsevier.com/S0957-4174(22)02434-4/sb14
http://refhub.elsevier.com/S0957-4174(22)02434-4/sb14
http://refhub.elsevier.com/S0957-4174(22)02434-4/sb14
http://refhub.elsevier.com/S0957-4174(22)02434-4/sb14
http://dx.doi.org/10.1007/978-3-030-01231-1_17
http://dx.doi.org/10.1007/978-3-030-01231-1_17
http://dx.doi.org/10.1007/978-3-030-01231-1_17


Expert Systems With Applications 216 (2023) 119415X. Pei et al.

G

H

H

H

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., & Bengio, Y. (2020). Generative adversarial networks. Communications
of the ACM, 63, 139–144.

u, J., Cai, J., Joty, S. R., Niu, L., & Wang, G. (2018). Look, imagine and match: Im-
proving textual-visual cross-modal retrieval with generative models. In Proceedings
of the IEEE conference on computer vision and pattern recognition (pp. 7181–7189).
http://dx.doi.org/10.1109/cvpr.2018.00750.

adsell, R., Chopra, S., & LeCun, Y. (2006). Dimensionality reduction by learning
an invariant mapping. 2, In 2006 IEEE computer society conference on computer
vision and pattern recognition (pp. 1735–1742). IEEE, http://dx.doi.org/10.1109/
cvpr.2006.100.

arwood, B., Kumar BG, V., Carneiro, G., Reid, I., & Drummond, T. (2017). Smart
mining for deep metric learning. In Proceedings of the IEEE international conference
on computer vision (pp. 2821–2829). http://dx.doi.org/10.1109/iccv.2017.307.

ochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation,
9, 1735–1780. http://dx.doi.org/10.1162/neco.1997.9.8.1735.

Hoffman, P., Grinstein, G., Marx, K., Grosse, I., & Stanley, E. (1997). DNA visual and
analytic data mining. In Proceedings. Visualization’97 (Cat. No. 97CB36155) (pp.
437–441). IEEE, http://dx.doi.org/10.1109/visual.1997.663916.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. Advances in Neural Information Processing Systems,
25, http://dx.doi.org/10.1145/3065386.

Lee, K. -H., Chen, X., Hua, G., Hu, H., & He, X. (2018). Stacked cross attention for
image-text matching. In Proceedings of the European conference on computer vision
(pp. 201–216). http://dx.doi.org/10.1007/978-3-030-01225-0_13.

Li, K., Zhang, Y., Li, K., Li, Y., & Fu, Y. (2022). Image-text embedding learning via
visual and textual semantic reasoning. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 1. http://dx.doi.org/10.1109/tpami.2022.3148470.

Liong, V. E., Lu, J., Tan, Y. -P., & Zhou, J. (2016). Deep coupled metric learning
for cross-modal matching. IEEE Transactions on Multimedia, 19, 1234–1244. http:
//dx.doi.org/10.1109/tmm.2016.2646180.

Liu, Y., Wu, J., Qu, L., Gan, T., Yin, J., & Nie, L. (2022). Self-supervised correlation
learning for cross-modal retrieval. IEEE Transactions on Multimedia, http://dx.doi.
org/10.1109/tmm.2022.3152086.

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. In-
ternational Journal of Computer Vision, 60, 91–110. http://dx.doi.org/10.1023/b:
visi.0000029664.99615.94.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed
representations of words and phrases and their compositionality. Advances in Neural
Information Processing Systems, 26.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,
Desmaison, A., Antiga, L., & Lerer, A. (2017). Automatic differentiation in pytorch.

Peng, Y., Huang, X., & Zhao, Y. (2017). An overview of cross-media retrieval: Concepts,
methodologies, benchmarks, and challenges. IEEE Transactions on Circuits and
Systems for Video Technology, 28, 2372–2385. http://dx.doi.org/10.1109/tcsvt.2017.
2705068.

Peng, Y., Qi, J., Huang, X., & Yuan, Y. (2017). CCL: Cross-modal correlation learning
with multigrained fusion by hierarchical network. IEEE Transactions on Multimedia,
20, 405–420. http://dx.doi.org/10.1109/tmm.2017.2742704.

Peng, Y., Qi, J., & Zhuo, Y. (2019). MAVA: Multi-level adaptive visual-textual alignment
by cross-media bi-attention mechanism. IEEE Transactions on Image Processing, 29,
2728–2741. http://dx.doi.org/10.1109/tip.2019.2952085.

Peng, Y., Zhai, X., Zhao, Y., & Huang, X. (2015). Semi-supervised cross-media feature
learning with unified patch graph regularization. IEEE Transactions on Circuits and
Systems for Video Technology, 26, 583–596. http://dx.doi.org/10.1109/tcsvt.2015.
2400779.
21
Qu, L., Liu, M., Wu, J., Gao, Z., & Nie, L. (2021). Dynamic modality interaction
modeling for image-text retrieval. In Proceedings of the 44th international ACM SIGIR
conference on research and development in information retrieval (pp. 1104–1113).
http://dx.doi.org/10.1145/3404835.3462829.

Rashtchian, C., Young, P., Hodosh, M., & Hockenmaier, J. (2010). Collecting image
annotations using amazon’s mechanical turk. In Proceedings of the NAACL HLT 2010
workshop on creating speech and language data with Amazon’s Mechanical Turk (pp.
139–147).

Rasiwasia, N., Costa Pereira, J., Coviello, E., Doyle, G., Lanckriet, G. R. G., Levy, R.,
& Vasconcelos, N. (2010). A new approach to cross-modal multimedia retrieval. In
Proceedings of the 18th ACM international conference on multimedia (pp. 251–260).

Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv
preprint arXiv:1609.04747.

Schroff, F., Kalenichenko, D., & Philbin, J. (2015). FaceNet: A unified embedding for
face recognition and clustering. In Proceedings of the IEEE conference on computer
vision and pattern recognition (pp. 815–823). http://dx.doi.org/10.1109/cvpr.2015.
7298682.

Ustinova, E., & Lempitsky, V. (2016). Learning deep embeddings with histogram loss.
Advances in Neural Information Processing Systems, 29.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł.,
& Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information
Processing Systems, 30.

Wang, K., He, R., Wang, L., Wang, W., & Tan, T. (2015). Joint feature selection and
subspace learning for cross-modal retrieval. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 38, 2010–2023. http://dx.doi.org/10.1109/tpami.2015.
2505311.

Wang, B., Yang, Y., Xu, X., Hanjalic, A., & Shen, H. T. (2017). Adversarial cross-modal
retrieval. In Proceedings of the 25th ACM international conference on multimedia (pp.
154–162).

Wei, J., Xu, X., Wang, Z., & Wang, G. (2021). Meta self-paced learning for cross-modal
matching. In Proceedings of the 29th ACM international conference on multimedia (pp.
3835–3843). http://dx.doi.org/10.1145/3474085.3475451.

Wei, J., Yang, Y., Xu, X., Zhu, X., & Shen, H. T. (2021). Universal weighting metric
learning for cross-modal retrieval. IEEE Transactions on Pattern Analysis and Machine
Intelligence, http://dx.doi.org/10.1109/tpami.2021.3088863.

Wei, X., Zhang, T., Li, Y., Zhang, Y., & Wu, F. (2020). Multi-modality cross attention
network for image and sentence matching. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition (pp. 10941–10950). http://dx.doi.org/10.
1109/cvpr42600.2020.01095.

Xu, X., Lin, K., Yang, Y., Hanjalic, A., & Shen, H. T. (2020). Joint feature synthesis and
embedding: Adversarial cross-modal retrieval revisited. IEEE Transactions on Pattern
Analysis and Machine Intelligence, http://dx.doi.org/10.1109/tpami.2020.3045530.

Zhai, X., Peng, Y., & Xiao, J. (2012a). Cross-modality correlation propagation for cross-
media retrieval. In 2012 IEEE international conference on acoustics, speech and signal
processing (pp. 2337–2340). IEEE, http://dx.doi.org/10.1109/icassp.2012.6288383.

Zhai, X., Peng, Y., & Xiao, J. (2012b). Effective heterogeneous similarity measure with
nearest neighbors for cross-media retrieval. In International conference on multimedia
modeling (pp. 312–322). Springer, http://dx.doi.org/10.1007/978-3-642-27355-1_
30.

Zhai, X., Peng, Y., & Xiao, J. (2013a). Heterogeneous metric learning with joint
graph regularization for cross-media retrieval. In Twenty-seventh AAAI conference
on artificial intelligence. http://dx.doi.org/10.1609/aaai.v27i1.8464.

Zhai, X., Peng, Y., & Xiao, J. (2013b). Learning cross-media joint representation with
sparse and semisupervised regularization. IEEE Transactions on Circuits and Systems
for Video Technology, 24, 965–978. http://dx.doi.org/10.1109/tcsvt.2013.2276704.

Zhang, K., Mao, Z., Wang, Q., & Zhang, Y. (2022). Negative-aware attention framework
for image-text matching. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition (pp. 15661–15670). http://dx.doi.org/10.1109/cvpr52688.
2022.01521.

Zheng, L., Yang, Y., & Tian, Q. (2017). SIFT meets CNN: A decade survey of
instance retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence,
40, 1224–1244. http://dx.doi.org/10.1109/tpami.2017.2709749.

http://refhub.elsevier.com/S0957-4174(22)02434-4/sb16
http://refhub.elsevier.com/S0957-4174(22)02434-4/sb16
http://refhub.elsevier.com/S0957-4174(22)02434-4/sb16
http://refhub.elsevier.com/S0957-4174(22)02434-4/sb16
http://refhub.elsevier.com/S0957-4174(22)02434-4/sb16
http://dx.doi.org/10.1109/cvpr.2018.00750
http://dx.doi.org/10.1109/cvpr.2006.100
http://dx.doi.org/10.1109/cvpr.2006.100
http://dx.doi.org/10.1109/cvpr.2006.100
http://dx.doi.org/10.1109/iccv.2017.307
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1109/visual.1997.663916
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1609.02907
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1007/978-3-030-01225-0_13
http://dx.doi.org/10.1109/tpami.2022.3148470
http://dx.doi.org/10.1109/tmm.2016.2646180
http://dx.doi.org/10.1109/tmm.2016.2646180
http://dx.doi.org/10.1109/tmm.2016.2646180
http://dx.doi.org/10.1109/tmm.2022.3152086
http://dx.doi.org/10.1109/tmm.2022.3152086
http://dx.doi.org/10.1109/tmm.2022.3152086
http://dx.doi.org/10.1023/b:visi.0000029664.99615.94
http://dx.doi.org/10.1023/b:visi.0000029664.99615.94
http://dx.doi.org/10.1023/b:visi.0000029664.99615.94
http://refhub.elsevier.com/S0957-4174(22)02434-4/sb30
http://refhub.elsevier.com/S0957-4174(22)02434-4/sb30
http://refhub.elsevier.com/S0957-4174(22)02434-4/sb30
http://refhub.elsevier.com/S0957-4174(22)02434-4/sb30
http://refhub.elsevier.com/S0957-4174(22)02434-4/sb30
http://refhub.elsevier.com/S0957-4174(22)02434-4/sb31
http://refhub.elsevier.com/S0957-4174(22)02434-4/sb31
http://refhub.elsevier.com/S0957-4174(22)02434-4/sb31
http://dx.doi.org/10.1109/tcsvt.2017.2705068
http://dx.doi.org/10.1109/tcsvt.2017.2705068
http://dx.doi.org/10.1109/tcsvt.2017.2705068
http://dx.doi.org/10.1109/tmm.2017.2742704
http://dx.doi.org/10.1109/tip.2019.2952085
http://dx.doi.org/10.1109/tcsvt.2015.2400779
http://dx.doi.org/10.1109/tcsvt.2015.2400779
http://dx.doi.org/10.1109/tcsvt.2015.2400779
http://dx.doi.org/10.1145/3404835.3462829
http://refhub.elsevier.com/S0957-4174(22)02434-4/sb37
http://refhub.elsevier.com/S0957-4174(22)02434-4/sb37
http://refhub.elsevier.com/S0957-4174(22)02434-4/sb37
http://refhub.elsevier.com/S0957-4174(22)02434-4/sb37
http://refhub.elsevier.com/S0957-4174(22)02434-4/sb37
http://refhub.elsevier.com/S0957-4174(22)02434-4/sb37
http://refhub.elsevier.com/S0957-4174(22)02434-4/sb37
http://refhub.elsevier.com/S0957-4174(22)02434-4/sb38
http://refhub.elsevier.com/S0957-4174(22)02434-4/sb38
http://refhub.elsevier.com/S0957-4174(22)02434-4/sb38
http://refhub.elsevier.com/S0957-4174(22)02434-4/sb38
http://refhub.elsevier.com/S0957-4174(22)02434-4/sb38
http://arxiv.org/abs/1609.04747
http://dx.doi.org/10.1109/cvpr.2015.7298682
http://dx.doi.org/10.1109/cvpr.2015.7298682
http://dx.doi.org/10.1109/cvpr.2015.7298682
http://refhub.elsevier.com/S0957-4174(22)02434-4/sb41
http://refhub.elsevier.com/S0957-4174(22)02434-4/sb41
http://refhub.elsevier.com/S0957-4174(22)02434-4/sb41
http://refhub.elsevier.com/S0957-4174(22)02434-4/sb42
http://refhub.elsevier.com/S0957-4174(22)02434-4/sb42
http://refhub.elsevier.com/S0957-4174(22)02434-4/sb42
http://refhub.elsevier.com/S0957-4174(22)02434-4/sb42
http://refhub.elsevier.com/S0957-4174(22)02434-4/sb42
http://dx.doi.org/10.1109/tpami.2015.2505311
http://dx.doi.org/10.1109/tpami.2015.2505311
http://dx.doi.org/10.1109/tpami.2015.2505311
http://refhub.elsevier.com/S0957-4174(22)02434-4/sb44
http://refhub.elsevier.com/S0957-4174(22)02434-4/sb44
http://refhub.elsevier.com/S0957-4174(22)02434-4/sb44
http://refhub.elsevier.com/S0957-4174(22)02434-4/sb44
http://refhub.elsevier.com/S0957-4174(22)02434-4/sb44
http://dx.doi.org/10.1145/3474085.3475451
http://dx.doi.org/10.1109/tpami.2021.3088863
http://dx.doi.org/10.1109/cvpr42600.2020.01095
http://dx.doi.org/10.1109/cvpr42600.2020.01095
http://dx.doi.org/10.1109/cvpr42600.2020.01095
http://dx.doi.org/10.1109/tpami.2020.3045530
http://dx.doi.org/10.1109/icassp.2012.6288383
http://dx.doi.org/10.1007/978-3-642-27355-1_30
http://dx.doi.org/10.1007/978-3-642-27355-1_30
http://dx.doi.org/10.1007/978-3-642-27355-1_30
http://dx.doi.org/10.1609/aaai.v27i1.8464
http://dx.doi.org/10.1109/tcsvt.2013.2276704
http://dx.doi.org/10.1109/cvpr52688.2022.01521
http://dx.doi.org/10.1109/cvpr52688.2022.01521
http://dx.doi.org/10.1109/cvpr52688.2022.01521
http://dx.doi.org/10.1109/tpami.2017.2709749

	Complementarity is the king: Multi-modal and multi-grained hierarchical semantic enhancement network for cross-modal retrieval
	Introduction
	Related Works
	Cross-modal retrieval
	Metric learning for cross-modal retrieval

	Proposed Method
	Problem Formulation
	Framework of M2HSE
	Feature encoders
	Primary modality 1: CNN
	Primary modality 2: Bi-GRU
	Auxiliary modality: SIFT-BoVW

	Cross-modal similarity calculation
	GCS: global-level cross-modal similarity calculation module
	LCS: local-level cross-modal similarity calculation module

	Cross-modal similarity optimization

	Experiment
	Datasets and evaluation metrics
	Implementation details
	Compared methods
	Comparison results
	Parameter sensitivity and convergence analysis
	Ablation studies
	Ablation study 1
	Ablation study 2

	Qualitative results and analysis

	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Appendix A
	References


